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Abstract: 

This paper is based on the cited article of Scott Simkins (1995): In order of producing 

macroeconomic forecasts, he constructed a 5-varibale VAR restricted by common 

characteristics of business cycles in a Monte Carlo procedure. Simkins then 

evaluated its performance against an unrestricted VAR and a Bayesian VAR and 

concluded that his procedure was only marginally superior to an unrestricted VAR 

and that a BVAR analysis performed much better in predicting GNP, unemployment 

and inflation.  

In this paper I will show that a slight improvement in the specification of the 

unrestricted VAR and, even more, Vector Error Correction models produce forecasts 

able to compete with the BVAR mentioned above. 
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Introduction 

Originally, I was supposed to reproduce the basis of this paper, the article 

“Forecasting with Vector Autoregressive (VAR) Models Subject to Business Cycle 

Restrictions”. 

The author, Prof. Simkins, was primarily interested in an application of business cycle 

theory to forecasting of five US quarterly macroeconomic time series: Real GNP, 

GNP deflator, unemployment rate, real fixed investment and money supply (M1) from 

1948 to 1990.  

By applying a turning point procedure (Bry and Boschan), he then distinguished 

seven completed business cycles in the data. These cycles were normalized by their 

mean and divided into nine stages –  the first trough (start), the peak and the second 

trough (end) and three successive thirds for the expansion and the contraction phase 

– and finally the mean of these stages (plus/minus standard deviation bounds) was 

computed for each of the five variables. 

Then Simkins estimated an ordinary, 6-lag level VAR and applied multinormal 

drawing procedures to its parameters and errors in order to conduct a Monte Carlo 

simulation for the whole sample period. Then the same turning point and stage 

procedure as above was applied to the simulation outcomes and only those 

corresponding to the “historical” business cycle patterns (for each variable – this 

resulted in a selection of about 10% of the simulated paths) were selected as good 

enough for conducting dynamic forecasts (1 to 8 steps ahead) for three arbitrarily 

chosen periods (1987:3-1989:2, 1988:2-1990:1, 1989:1-1990:4). The author then 

evaluated the “fit” of these predictions by Theil’s U-Statistic of GNP, Deflator and 

unemployment rate forecasts. 

Besides his own restricted VAR, Simkins did an evaluation of well-known, more 

established VAR techniques: an unrestricted, normal VAR and a Bayesian VAR 

(BVAR) with Minnesota Priors (this is a technique of imposing prior distributions near 

to random walk to the VAR parameters and obtaining the “best” distribution by 

successive re-estimation of the VAR’s final distribution by Monte Carlo Methods). 

 

As I mentioned above, I was supposed to reproduce the paper and I invested a lot of 

energy in understanding the theory of Bayesian and Monte Carlo techniques in order 
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to calculate the restricted VAR model and the BVAR. But the means I had were 

inadequate: no courses and experts regarding the matter at university, and the 

software Eviews, Mathematica, MS Excel and VBA. After three days I concluded that 

accomplishing my task would be a matter of weeks, rather than days. Therefore I 

chose a different path: 

Simkins wrote his paper in 1994, when Vector Error Correction (VEC) models did 

already exist: Nevertheless he did not consider them for evaluating the performance 

of his own model or for applying his procedure to them. In the following pages, I will 

show how I estimated VEC models that even beat the Theil U Statistic for BVARs. 

Moreover I will demonstrate that a slight change in the specification of the VAR (not 

to levels, but to their logarithms) improves its performance considerably. These types 

of models are much more simple to estimate than a BVAR or Simkins’ variant (and 

they could provide a better basis for applying Simkins’ or Bayesian procedures).  

I will first introduce Simkins’ unrestricted VARs and consider some improvements. 

Then I will evaluate certain variants of VECs and their different performance 

regarding different questions. 

 

Simkins’ unrestricted VAR 

Simkins estimated a simple 6-lag VAR with constants, corresponding to a 

macroeconomic model by Litterman. Figure 1 shows its estimation output. 

 

The model was evaluated versus the two others by Theil’s U Statistic: This measure 

divides the root mean squared error (RMSE) of the models forecast by the RMSE of 

the naïve forecast: the naïve forecast is simply taking the last value in the sample 

 Deflator Investment M1 GNP unemployment 
 R-squared 0.999950 0.999396 0.999834 0.996594 0.975708 
 Adj. R-squared 0.999937 0.999247 0.999793 0.995750 0.969685 
 Sum sq. resids 6.444210 53068.20 610.8618 9375.864 10.92836 
 S.E. equation 0.230777 20.94230 2.246874 8.802640 0.300528 
 F-statistic 80186.42 6677.206 24289.37 1180.301 161.9992 
 Log likelihood 24.53443 -660.6930 -321.3939 -528.9517 -15.60716 
 Akaike AIC 0.085073 9.101224 4.636762 7.367785 0.613252 
 Schwarz SC 0.701786 9.717937 5.253474 7.984498 1.229965 
 Mean dependent 51.99013 2337.464 256.1728 375.7796 5.724013 
 S.D. dependent 29.12900 763.0011 156.0972 135.0275 1.726051 
 Determinant Residual Covariance 102.4292    
 Log Likelihood -1430.210    
 Akaike Information Criteria 20.85803    
 Schwarz Criteria 23.94159   

Figure 1: Estimation output of Simins’ VAR 
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(the forecast’s starting point) as a prediction for the time series. The more the value 

of Theil’s U Statistic is close to zero, the better is the fit of the underlying forecast.  A 

value below 1 indicates that the model performs better than the naive forecast. 

This measure is applied to Real GNP, GNP Deflator and unemployment rate 

forecasts – the performance of Simkins’ three models is shown in Figure 2. 

 

The Theil U Statistics for the unrestricted VAR were computed by seven 1 to 8-step 

ahead forecasts in the period 1987:3 to 1990:4. Thus the starting periods for the 

seven forecasts are from 1987:2 to 1988:4. It can easily be seen that the dynamic 

forecasts become the less accurate, the more they are ahead of their starting period. 

Simkin’s methods are only marginally superior to the predictions by an unrestricted 

VAR, whereas the Bayesian VAR performs much better than the simple and the 

“theoretical” VAR. 

 

A VAR in logs 

However, some problems were not considered in this approach: First, a VAR is a 

linear model, i.e. it does not capture non-linear elements, elements existing certainly 

in level series of GNP, deflator, money supply and investment (especially concerning 

Variable Steps ahead (k) Unrestricted VAR 
model 

Restricted VAR model Bayesian VAR model 

Real GNP 1 1.062 1.043 0.303 
 2 1.227 1.186 0.298 
 3 1.198 1.132 0.311 
 4 1.158 1.060 0.366 
 5 1.124 0.993 0.445 
 6 1.116 0.977 0.549 
 7 1.135 1.007 0.648 
 8 1.157 1.039 0.794 
     

GNP Deflator 1 0.551 0.510 0.290 
 2 0.651 0.582 0.289 
 3 0.721 0.605 0.284 
 4 0.786 0.621 0.274 
 5 0.838 0.634 0.262 
 6 0.869 0.631 0.253 
 7 0.900 0.634 0.252 
 8 0.941 0.646 0.266 
     

Unemployment Rate 1 3.152 3.117 0.656 
 2 4.332 4.212 0.635 
 3 5.601 5.342 0.779 
 4 6.569 6.124 0.939 
 5 7.861 7.160 1.302 
 6 8.227 7.406 1.523 
 7 8.606 7.750 1.945 
 8 8.529 7.775 2.458 

Figure 2: Theil U statistics of Simkins’ three models’ 1-8-step-ahead 
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their exponential growth). The easiest way to respond to this problem is to linearize 

the data by taking the logs of the levels.  

Second, the lag length of 6 is not the optimal choice, if one considers selection 

criteria based on log likelihood. A log-estimation of different lag lengths and choice by 

the Schwarz criterion (SC) and the Akaike info criterion (AIC) lead to the conclusion 

that a VAR with lag three would be optimal: SC and AIC are the highest for a 2-lag 

VAR1, plus one lag for being sure to capture additional information (for the case that 

the minimum lies between lag two and lag three). One might consider a lag selection 

by an LR statistic, too: This is a measure of testing the null-hypothesis of adding 

parameters to the model does not change it significantly towards the “good” direction. 

Given the high number of added restrictions (parameters of the equations) per lag 

(25, the number of degrees of freedom in a Chi2-distribution per adding one lag) the 

resulting p-values prefer the 3-lag model to every higher-lag model2.  

But Simkins wanted to conduct dynamic forecasts up to eight periods ahead. 

Considering this aim, more lags would certainly add a bit more “real” information into 

far-ahead forecasts, even if their short-term performance would suffer. Concerning 

that, a 6-lag (and maybe an 8-lag) VAR seem to be the best choice because there 

log-likelihoods increase considerably over lag 5 and 7. Nevertheless, for the sake of 

a short paper I will only analyze the three lag VAR: The estimation output of such a 

VAR is shown in Figure 3. 

                                                           
1 The AIC is even higher with higher lag number (6 and 8), but very slightly. 
2 The p-values are computed by the following procedure: one minus the Chi-squared distribution of 
two times the log-likelihood of the lower-lag VAR minus log-likelihood of the higher-lag VAR, with the 
as many degrees of freedom as the difference of parameters between the two. The resulting p-values 
are 0.99, 0.567 and 0.687 for the four-, six, and eight-lag VARs versus the three-lag VAR, 
respectively. 

 Deflator Investment M1 GNP Unemployment 
R-squared  0.999911  0.997028  0.999874  0.999419  0.967683 
 Adj. R-squared  0.999902  0.996721  0.999861  0.999359  0.964340 
 Sum sq. resides  0.004090  0.072261  0.006796  0.012190  0.476889 
 S.E. equation  0.005311  0.022324  0.006846  0.009169  0.057349 
 F-statistic  109195.5  3243.435  76727.68  16637.24  289.4563 
 Log likelihood  623.2854  392.1148  582.4173  535.3801  240.2119 
 Akaike AIC -7.543918 -4.672234 -7.036240 -6.451926 -2.785241 
 Schwarz SC -7.237691 -4.366007 -6.730013 -6.145700 -2.479014 
 Mean dependent  3.837678  5.875014  5.425485  7.710055  1.696497 
 S.D. dependent  0.537401  0.389856  0.580659  0.362215  0.303693 
 Determinant Residual Covariance  4.22E-20    
 Log Likelihood  2448.957    
 Akaike Information Criteria -29.42804    
 Schwarz Criteria -27.89691    

Figure 3: Estimation output for a VAR in logs (3 lags) 
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As seen in the Theil U table in the appendix3, this log-VAR provides a much better fit 

then the original one, a feature that also marks the covariance matrix of the residuals: 

A comparison of the two determinants of each’s residual covariance matrix shows a 

value >100 for the original VAR and a value near to zero for the log-VAR. Since a 

linearly dependent covariance matrix seems unlikely, the zero-value must be due to 

very small covariances – but these are caused by the transformation into log-units, 

and must not be due to a real improvement of the model. The same goes for the 

“criterions”: The lower AIC and SC values of the log-VAR can not be considered as 

an improvement since the dependent variable has changed. 

 

VEC models 

As seen by a closer look at Figure 1 and 3, the high R2s of the VAR models in (log-

linearized) levels hint at a spurious regression problem. This does not mean that 

there is no relationship between our five variables, but part of the R2 might only be 

due to the correlation of integrated data. A unit-root test on the five variables confirms 

this suspicion: not even the coefficient4 of the unemployment rate is negative enough 

to reject the null hypothesis of an integrated time series! The residuals of the level-

VAR are also integrated, whereas the residuals of the log-VAR are not. 

                                                           
3 The Theil U values for the unrestricted VAR in the appendix differ slightly from its Theil U values in 
Figure 2. This is due to the fact that Theil U statistics in the appendix are from the VAR I reproduced 
relying on Simkins‘ paper (and computed in MS Excel), and Figure 1 is copied from Simkins. The 
difference may be attributed to MS Excel’s minor accuracy concerning matrix operations. 
4 The coefficient of a LS regression of the first difference of the unemployment rate versus its value 
lagged by one period (plus 4 lagged first differences). The unit-root test carried out was an 
Augmented-Dickey-Fuller Test. 

Covariance matrix of the VAR in levels 
 Deflator GNP Investment M1 Unempl. 

Deflator 0.046707 0.321017 -0.155511 -0.045697 -0.007788 
GNP 0.321017 62.17747 87.38736 3.884951 -0.859825 

Investment -0.155511 87.38736 362.9078 4.918358 -2.739014 
M1 -0.045697 3.884951 4.918358 5.019088 -0.107527 

Unempl. -0.007788 -0.859825 -2.739014 -0.107527 0.073740 
 

Covariance matrix of the VAR in logs 
 Deflator GNP Investment M1 Unempl. 

Deflator 2.54E-05 1.25E-05 6.94E-07 -6.41E-07 -4.84E-05 
GNP 1.25E-05 0.000449 4.32E-05 9.43E-05 -0.000508 

Investment 6.94E-07 4.32E-05 4.22E-05 1.37E-05 -7.15E-05 
M1 -6.41E-07 9.43E-05 1.37E-05 7.57E-05 -0.000276 

Unempl. -4.84E-05 -0.000508 -7.15E-05 -0.000276 0.002962 

Figure 4: Covariance matrices for Simkins’ VAR and the log-VAR 
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The first response to this problem would be to estimate a VAR in the first differences 

(resp. The returns) of our five variables. Nevertheless, some important information 

may also be contained in the levels of the data: e.g. the so-called “productivity 

slowdown” in US after-war growth rates (the higher the GNP, the less its growth). 

Regarding that, a Vector Error Correction (VEC) Model would be the right response, 

principally a VAR in first differences but with correction restrictions based on the 

cointegration concept. 

 

In order to know if a VEC is appropriate, a cointegration test has to be conducted. 

Figure 5 summarizes such a test for the number of cointegration relations, and the 

columns correspond to the five different assumptions concerning the structure of the 

VEC equations (the number of lags does not change the outcome significantly). 

According to its output, assumption 45 is selected because it sounds reasonable that 

imbalances in our four integrated (without the unemployment rate) variables may 

grow or fall with respect to time. In addition, a number of two cointegration equations 

may be more realistic regarding the character of our time series and the SC and AIC 

of assumption four seem more convincing. 

 

 

 

                                                           
5 The cointegration equation contains constants and a linear trend. 

Series: LOG(DEFL) LOG(GNP) LOG(INV) LOG(MONE) LOG(UNEMP) 
Lags interval: 1 to 6 

Data Trend: None None Linear Linear Quadratic 
Rank or No Intercept Intercept Intercept Intercept Intercept 

No. of CEs No Trend No Trend No Trend Trend Trend 
Akaike Information Criteria by Model and Rank 

0 -29.24852 -29.24852 -29.34955 -29.34955 -29.34029 
1 -29.34006 -29.46143 -29.55635 -29.55415 -29.55694 
2 -29.38920 -29.50464 -29.59161 -29.62532 -29.61359 
3 -29.42351 -29.52707 -29.58078 -29.61583 -29.59574 
4 -29.40625 -29.49769 -29.48565 -29.55768 -29.54971 
5 -29.28650 -29.38928 -29.38928 -29.44938 -29.44938 

Schwarz Criteria by Model and Rank 
0 -26.42494 -26.42494 -26.43184 -26.43184 -26.32847 
1 -26.32823 -26.43078 -26.45041 -26.42938 -26.35687 
2 -26.18913 -26.26693 -26.29743 -26.29349 -26.22529 
3 -26.03521 -26.08229 -26.09836 -26.07694 -26.01920 
4 -25.82971 -25.84585 -25.81499 -25.81172 -25.78493 
5 -25.52172 -25.53038 -25.53038 -25.49635 -25.49635 

L.R. Test: Rank = 4 Rank = 4 Rank = 2 Rank = 2 Rank = 2 

Figure 5: Johansen Cointegration test summarizing five assumptions 
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Therefore a VEC with two cointegration equations under assumption four is 

estimated, one for 3 lags and one for 6 lags. Figure 7 shows their estimation outputs. 

The two cointegration equations yield the same output regardless of which variables 

are included in each of them, since they can be transformed linearly. An short look at 

the two lower tables shows that almost all of the variables depend significantly on at 

least one cointegration equation. It seems that the trend variable is significant 

although it has only a slight impact on the outcome (eliminating it worsens the results 

only slightly) – and at least one cointegration equation is justified. In addition the 

cointegration relationships provide an opportunity of economic interpretation: If one 

looks, e.g., at the 6-lag VEC, what effect does the level of GNP have on GNP 

  3-lag-VEC 6-lag-VEC 
  Standard errors & t-statistics in 

parentheses 
 Standard errors & t-statistics in 

parentheses 
Cointegrating Eq:  CointEq1 CointEq2 CointEq1 CointEq2 

LOG(DEFLATOR(-1))  1.000000  0.000000  1.000000  0.000000 
     

LOG(INVESTMENT(-1))  0.000000  1.000000  0.000000  1.000000 
     

LOG(M_ONE(-1)) -0.210937 -0.575160 -0.466773 -0.062476 
  (0.29787)  (0.23871)  (0.14714)  (0.08027) 
 (-0.70815) (-2.40943) (-3.17220) (-0.77833) 
     

LOG(REALGNP(-1))  6.397353 -6.304075  3.968452 -0.932555 
  (2.88127)  (2.30905)  (1.20802)  (0.65899) 
  (2.22033) (-2.73016)  (3.28508) (-1.41513) 
     

LOG(UNEMPL(-1))  0.648705 -0.789048  0.323661 -0.028291 
  (0.40834)  (0.32724)  (0.16503)  (0.09003) 
  (1.58864) (-2.41119)  (1.96119) (-0.31425) 
     

@TREND(48:1) -0.057139  0.048589 -0.035204 -1.13E-05 
  (0.02594)  (0.02079)  (0.01102)  (0.00601) 
 (-2.20279)  (2.33740) (-3.19345) (-0.00187) 
     

C -48.31831  43.10782 -29.50128  1.703781 
 
The cointegration equations in the 3-lag-VEC model 

Error Correction: D(LOG(DEFLAT
OR)) 

D(LOG(INVEST
MENT)) 

D(LOG(M_ONE)) D(LOG(REALGN
P)) 

D(LOG(UNEMPL
)) 

CointEq1  0.012441 -0.074175  0.022298 -0.039480  0.180855 
  (0.00656)  (0.02735)  (0.00871)  (0.01198)  (0.07367) 
  (1.89511) (-2.71165)  (2.56138) (-3.29632)  (2.45480) 
      

CointEq2  0.002520 -0.172149  0.002547 -0.037476  0.320545 
  (0.00766)  (0.03193)  (0.01016)  (0.01398)  (0.08601) 
  (0.32881) (-5.39081)  (0.25066) (-2.68022)  (3.72691) 

 
The cointegration equations in the 6-lag-VEC model 

Error Correction: D(LOG(DEFLAT
OR)) 

D(LOG(INVEST
MENT)) 

D(LOG(M_ONE)) D(LOG(REALGN
P)) 

D(LOG(UNEMPL
)) 

CointEq1  0.013730  0.037146  0.035847 -0.034119 -0.016933 
  (0.00766)  (0.03537)  (0.01090)  (0.01508)  (0.09489) 
  (1.79236)  (1.05023)  (3.28786) (-2.26253) (-0.17845) 
      

CointEq2  0.056009 -0.158887  0.002542 -0.028966  0.150096 
  (0.01103)  (0.05092)  (0.01570)  (0.02171)  (0.13661) 
  (5.07877) (-3.12032)  (0.16194) (-1.33419)  (1.09869) 

Figure 6: Cointegration relationships of two VECs 
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growth? First of all, the value of Z1 (sum of the components in CointEq1) has more 

impact on GNP growth ( D(LOG(GNP)) ) than Z2 (-0.034 vs. –0.029). And Z1 is much 

more (positively) influenced by the log-level of GNP than Z2 is (negatively) 

dependent on this level. Thus a high GNP level yields a high Z1 and this in return is 

multiplied with a negative number – so GNP growth is negatively dependent on GNP 

levels, a productivity slowdown, as mentioned before, may be identified. Monetary 

expansions ( D(LOG(M_ONE)) ) depend positively on the GNP level – this could be 

attributed to an ever-increasing usage of this policy tool throughout the sixties, 

seventies and part of the eighties. A simple regression and a scatter plot confirm this 

suspicion.  

 

Although the AIC and SC compared to the log-VAR do not show any improvement, 

the mean error of the dependent variables has decreased. The Theil U table shows 

that the two models beat the log-VAR in out-of-sample forecasts, especially in the 

short term and in deflator predictions, whereas the log-VAR performs still remarkably 

well in long-term forecasts for GNP (Even if the log-VAR is better in predicting 

unemployment than the VECs, its Theil U values higher than one do not make it a 

better model than the naïve forecast). By this table it can also be judged that the 6-

lag-VEC does not outperform the 3-lag VEC. Although the 6-lag VAR certainly 

provides more information based on “real values”, more lags add apparently more 

perturbation than information. 

 

 

 

 

Dependent Variable: DLOG(HM_ONE)  
Method: Least Squares  

Variable Coefficient Std. Error t-Statistic Prob. 
C -0.081705 0.023684 -3.449813 0.0007

LOG(HREALGNP) 0.012093 0.003055 3.958584 0.0001
AR(1) 0.528659 0.065810 8.033050 0.0000

R-squared 0.463780     Mean dependent var 0.011827 
Adjusted R-squared 0.457358     S.D. dependent var 0.009602 
S.E. of regression 0.007073     Akaike info criterion -7.047588 
Sum squared resid 0.008354     Schwarz criterion -6.992251 
Log likelihood 602.0450     F-statistic 72.21971 
Durbin-Watson stat 2.056379     Prob(F-statistic) 0.000000 
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Figure 7: Money growth and GNP level – regression and scatter plot 
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Seasonality – A VEC in the Differences 

In estimating the appropriateness of the VECs, one task remains to be done: a check 

if the residuals of these models are really white noise (stationary and unrelated). The 

auto-correlograms for the residuals of the (really) integrated series (here only the 

GNP series) show no remaining information not captured by the level models. But the 

correlograms of two series’ residuals provide a different picture: the unemployment 

and the investment series. A quick look at their correlograms (figure 9) shows that a 

small seasonality component remains. Although it might be unworthy to look for 

(small) improvements in investment data, the unemployment forecasts seem 

desperate for any inclusion of seasonality: Their Theil U coefficient never reaches 

values lower than one for any of the models discussed above.  

Estimation output of the 3-lag VEC 
 Deflator Investment M1 GNP Unemployment 
R-squared  0.584126  0.506019  0.541095  0.355857  0.561109 
 Adj. R-squared  0.534338  0.446881  0.486156  0.278742  0.508565 
 Sum sq. resides  0.003773  0.065514  0.006635  0.012560  0.475237 
 S.E. equation  0.005155  0.021479  0.006836  0.009405  0.057851 
 F-statistic  11.73231  8.556500  9.848956  4.614589  10.67897 
 Log likelihood  625.3688  397.0235  580.2101  529.1632  238.4992 
 Akaike AIC -7.592110 -4.737793 -7.027626 -6.389540 -2.756239 
 Schwarz SC -7.246153 -4.391836 -6.681669 -6.043583 -2.410282 
 Mean dependent  0.010286  0.007849  0.012293  0.008017  0.002030 
 S.D. dependent  0.007554  0.028881  0.009536  0.011074  0.082524 
 Determinant Residual Covariance  3.35E-20    
 Log Likelihood  2452.183    
 Akaike Information Criteria -29.37729    
 Schwarz Criteria -27.41686    

 
Estimation output of the 6-lag VEC 
 Deflator Investment M1 GNP Unemployment 
R-squared  0.683685  0.556499  0.616556  0.465232  0.588914 
 Adj. R-squared  0.602055  0.442047  0.517603  0.327227  0.482828 
 Sum sq. resids  0.002609  0.055627  0.005286  0.010112  0.400401 
 S.E. equation  0.004587  0.021180  0.006529  0.009030  0.056825 
 F-statistic  8.375432  4.862292  6.230778  3.371132  5.551260 
 Log likelihood  641.1150  400.9356  585.6969  534.7722  245.9922 
 Akaike AIC -7.746689 -4.687077 -7.040725 -6.392003 -2.713276 
 Schwarz SC -7.104293 -4.044681 -6.398330 -5.749607 -2.070881 
 Mean dependent  0.010590  0.008680  0.012571  0.008234 -0.001493 
 S.D. dependent  0.007272  0.028355  0.009400  0.011010  0.079017 
 Determinant Residual Covariance  1.19E-20    
 Log Likelihood  2487.221    
 Akaike Information Criteria -29.42957    
 Schwarz Criteria -25.98399    

 

Figure 8: Estimation outputs of two VECs 
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So, how one could adjust for this additional information in the residuals? The 

seasonality component could be included by increasing the lag length of the VEC, 

e.g. eight lags. But this yields even worse results for all of the three variables, due to 

noisy data. 

This leads to leaving the VAR approach and building either auto-regressive models 

for the series or a transfer function for the interesting series (at least for the 

unemployment rate). But a pre-whitened transfer function for the unemployment rate 

relies only on lag-one variables, thus making a dynamic forecast not very reliable and 

difficult to handle (this would need a model relying on forecasts of the pre-whitened 

input series by some other explaining variables), although it provides a Theil U value 

of 0.50 for one-step-ahead forecasts. An AR(1,2,4,8,12) model for the unemployment 

rate, by contrast, yields results better than the others does not outperform the naive 

forecast. And apart from that, leaving the approach of building models by vector auto-

regression leads to drifting away from the basic paper.  

VEC (3-lags)      VEC (6 lags) 
Autocorr. of GNP-residuals    Autocorr. of GNP-residuals 

 
 
Autocorr. of unemployment-residuals   Autocorr. of unemployment-residuals 
 

Figure 9: Autocorrelations of (somewhat) seasonal residuals of two 
VEC models
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So the best choice would be to construct a VAR/VEC based on pre-whitened series: 

One could then estimate forecasts without having to bother for seasonality and re-

apply the reverted pre-whitening filter to the outcomes. This challenging approach 

would be uneasy to handle and would require sophisticated programming skills – 

which I have to admit, I do not dispose of.  

One choice remains for accounting for the seasonality phenomenon without 

complicated procedures: Estimating a VEC model not for the logs of the five 

variables, but for their returns.  Like a VAR based on the same returns, such a VEC 

would still capture the most important relationships between the variables – in fact 

there are more economic models relating GNP growth and M1 growth rather than 

their total values. This goes especially for the unemployment rate: In most theoretical 

works, it is related to growth rates. But this effect is already captured by the VEC in 

logs, so why loosing the level-effects and accounting for “change of growth” (the 

second derivative)? A rather intuitive explanation would be that the change in the 

returns of the variables determines the changes in unemployment. Another, more 

convincing explanation states the following: If the growth rates of variables behave 

seasonal (as GNP, investment and unemployment rate do), their seasonality could 

be adjusted for by taking first differences. So a VEC in the returns, which captures 

the first and the second derivatives of the dynamics, could be appropriate. Let’s have 

a look if this statement is true. 

By the AIC the 4-lag VEC in differences can be judged as the best one.6 And its 

performance is striking: Theil U values of mostly less than 0.8 for the unemployment 

rate may certainly not be the best model but outperform clearly all other alternatives – 

and, as the only one, even the naïve forecast. These numbers are not pure 

coincidence: the Theil U values for one-step ahead forecasts of this models are 

around 0.55 (for ten arbitrarily chosen forecast periods throughout the estimation 

sample). GNP predictions deliver better values too, although less dramatically. 

Inflation forecasts, in comparison, are not up to the predictions made by VEC models 

in log-levels.  

The interpretation of the cointegration relationships seems somewhat easier, 

because one is more used to handle its input variables. E.g. a Keynesian effect can 

                                                           
6 Whether the unemployment input is estimated in levels or in returns does not make any difference in 
the AIC for the neither for the unemployment rate nor for the whole model. Only the Theil U values for 
GNP forecasts are a lot worse in model with unemployment in levels. 
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be interpreted into the relationship between monetary growth and the change of the 

GNP growth: Higher monetary growth increases the growth of GDP growth by both 

cointegration equations,7 although this effect does not look very significant. And the 

reverse seems even more true: the higher GNP growth, and the lower the inflation, 

the more monetary expansion is stepped up (and vv.) – an effect maybe reflecting 

monetary policy. 

So, with respect to unemployment, the 4-lag VEC in the differences seems to be a 

better choice than in the levels. Nevertheless, omitting the level effects in order to 

                                                           
7 The effect of an increase in M1 expansion is negligible (its coefficients are very close to zero). 

Included observations: 158 after adjusting endpoints 
 Standard errors & t-statistics in parentheses 

Cointegrating Eq:  CointEq1 CointEq2    
DLOG(DEFL(-1))  1.000000  0.000000    

      
DLOG(GNP(-1))  0.000000  1.000000    

      
DLOG(INV(-1))  1.025716  0.129988    

  (0.50983)  (0.15289)    
  (2.01187)  (0.85019)    
      

DLOG(MONE(-1)) -0.797505 -0.119462    
  (0.65427)  (0.19621)    
 (-1.21892) (-0.60885)    
      

DLOG(UNEMP(-1)) -0.027903  0.152327    
  (0.08528)  (0.02557)    
 (-0.32721)  (5.95656)    
      

@TREND(48:1)  1.81E-05  3.86E-05    
  (9.6E-05)  (2.9E-05)    
  (0.18968)  (1.34482)    
      

C -0.010558 -0.011169    
Error Correction: D(DLOG(DEFL)) D(DLOG(GNP)) D(DLOG(INV)) D(DLOG(MONE)

) 
D(DLOG(UNEM

P)) 
CointEq1  0.005198 -0.201133 -0.930400 -0.102131  1.836803 

  (0.03101)  (0.05769)  (0.13066)  (0.04069)  (0.34271) 
  (0.16765) (-3.48636) (-7.12058) (-2.51001)  (5.35966) 
      

CointEq2  0.240530  0.310223  1.367599  0.401202 -7.714211 
  (0.11740)  (0.21843)  (0.49472)  (0.15406)  (1.29757) 
  (2.04878)  (1.42023)  (2.76439)  (2.60419) (-5.94512) 

 
 
R-squared  0.397923  0.483446  0.525241  0.405882  0.447119 
 Adj. R-squared  0.299806  0.399267  0.447873  0.309063  0.357020 
 Sum sq. resids  0.003585  0.012409  0.063654  0.006173  0.437891 
 S.E. equation  0.005153  0.009587  0.021714  0.006762  0.056953 
 F-statistic  4.055620  5.743070  6.788855  4.192163  4.962531 
 Log likelihood  620.6082  522.5100  393.3421  577.6729  240.9897 
 Akaike AIC -7.564661 -6.322911 -4.687875 -7.021176 -2.759363 
 Schwarz SC -7.118840 -5.877090 -4.242054 -6.575355 -2.313543 
 Mean dependent  0.000126  7.96E-05  0.000206  5.17E-06 -0.001682 
 S.D. dependent  0.006158  0.012370  0.029223  0.008135  0.071026 
 Determinant Residual Covariance  3.33E-20    
 Log Likelihood  2422.022    
 Akaike Information Criteria -29.05091    
 Schwarz Criteria -26.58920    

Figure 10: Estimation output of a VEC in returns (3 lags, 2 cointegration equations) 
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catch more of the growth dynamics did not yield better results for GNP forecasts, and 

seems to get away from describing the process forming the GNP deflator. 

 

Conclusion 

By comparison of the Theil U statistics of the considered models it can be seen that 

the models with more lags perform better in the long run. Whereas the VECs improve 

forecasts of deflator and unemployment rates considerably, the standard log-VAR 

shows comparable values concerning GNP predictions. Considering Simkins’ BVAR, 

the 3-lag VEC delivers comparable Theil U values, especially in the long run 

(whereas in the short run the random-walk specification of BVAR certainly strikes 

more). Only short-term GNP predictions remain a strong feature of the standard 

BVAR versus the more sophisticated regression models.  

Concerning the unemployment rate, the VEC in differences seems the only model 

producing usable results. This may be attributed to the fact that the unemployment 

rate is more dependent on the slope and acceleration of the other four variables than 

on their levels – economic models relate it more with growth ratios than with total 

indicators, too. 

Thus the results of Simkins’ restricted VAR would have been much more competitive 

with respect to the random-walk BVARs, if Prof. Simkins would have chosen a more 

appropriate specification of his VAR, or even a more sophisticated VEC model (which 

would have changed the random drawing procedure only by a slight amount).  
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Appendix 1: Forecasting Results Of the Considered Models 
 

 Step 
ahead 

level-VAR (6 
lags) 

log-VAR (3 lags) VEC (3 lags) VEC (6 lags) VEC in returns  
(4 lags) 

AR-model for 
unemployment 

rate 
     

GNP deflator 1 0.551 0.375 0.287 0.313 0.451  
 2 0.640 0.389 0.279 0.274 0.456  
 3 0.700 0.400 0.255 0.241 0.443  
 4 0.756 0.405 0.230 0.224 0.424  
 5 0.806 0.404 0.211 0.212 0.407  
 6 0.845 0.397 0.195 0.194 0.390  
 7 0.879 0.388 0.185 0.177 0.379  
 8 0.913 0.382 0.184 0.167 0.373  
        

Real GNP 1 1.059 1.040 0.859 0.983 0.885  
 2 1.191 1.032 0.877 0.957 0.862  
 3 1.194 1.003 0.843 0.911 0.791  
 4 1.176 0.962 0.808 0.879 0.735  
 5 1.155 0.914 0.780 0.865 0.709  
 6 1.142 0.866 0.760 0.857 0.715  
 7 1.140 0.817 0.743 0.846 0.740  
 8 1.143 0.775 0.734 0.836 0.781  
        

1 3.137 1.178 1.251 1.293 0.885 0.940 
2 4.013 1.539 1.716 1.663 0.862 1.098 
3 4.952 1.877 2.157 2.191 0.791 1.267 
4 5.740 2.013 2.417 2.627 0.735 1.426 
5 6.539 2.104 2.647 3.031 0.709 1.567 
6 7.077 2.079 2.778 3.223 0.715 1.666 
7 7.467 1.993 2.848 3.316 0.740 1.733 

Unemployment 
Rate 

8 7.693 1.883 2.873 3.332 0.781 1.761 
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Appendix 2: Model Forecasts for Three Periods in Diagrams 
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Three Models: Real GNP Forecasts 1988:2-
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Three Models: Unemployment Rate 
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