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Abstract

This first year paper is based on Pesaran et al. (2000) who generalise the cointegration tests

introduced by Johansen to include exogenous I(1) variables in a VECM model. It reiterates

the proofs for their central test statistics and presents them in a less dense format: Following

Pesaran et al. (2000), this paper focuses on the derivation of the corresponding cointegrating rank

tests, by first introducing a VAR model, subsequently deriving the likelihood for the cointegration

parameters and, finally, the test statistics and their asymptotic distributions. The final section

introduces tests on whether the required exogeneity restrictions hold. In addition, this paper is

concerned with implementing the mentioned test statistics in a Matlab routine. The respective

outlines on implementation and usage are in the appendix.
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1 Introduction

This paper is entirely based on Pesaran et al. (2000). As the title suggests, Pesaran et al. (2000)
are primarily concerned with extending the ubiquitous Johansen test for cointegration (Johansen,
1991) to the inclusion of exogenous variables: a sub-system of I(1) variables is assumed as structurally
exogenous as defined by Pesaran et al. (2000, p.294):

[. . . ] structurally exogenous; that is, any cointegrating vectors present do not appear in
the sub-system vector error correction model (VECM) for these exogenous variables and
the error terms in this sub-system are uncorrelated with those in the rest of the system.

This type of test provides a useful extension of the cointegrating rank tests proposed by Johansen
(1991). Its usage in applied econometric studies, however, suffers from two minor drawbacks: First,
the tests introduced by Pesaran et al. (2000) are, to our knowledge, not yet implemented in standard
software packages. Second, the derivation of their test statistics is quite dense, which may have
deterred readers with a less theoretic background.
Consequently, the motivation for this first year paper is twofold: Firstly, it aims at reiterating the
derivation of the centrepiece in Pesaran et al. (2000), the test statistic for cointegration rank, but
presenting the corresponding proofs in a consolidated fashion and thus facilitating their comprehension
to readers without particular knowledge of Johansen-type tests. Secondly, this paper is concerned
with implementing the major test statistics of Pesaran et al. (2000) in Matlab.
The latter objective has materialised in a routine available from the author; its implementation is
described in Appendix A.1. For a quick reference on using this routine, please refer to Appendix A.2.
The main body of this paper, though, is concerned with the former objective: Restating Pesaran et al.
(2000) in a consolidated fashion. In line with this motivation, we consequently prefer to state even
small proofs in the main text, rather than banning them to the appendix. The article by Pesaran
et al. (2000) broadly follows the structure given in Johansen (1991), which is itself an extension of
the earlier Johansen (1988).
Likewise, we will start with specifying a VAR(p) structure embodying both I(1) and I(0) processes
and spend section 2 on transforming its structure into a VMA(∞) model. Just as in Pesaran et al.
(2000), the following section (3) examines the derivation of the likelihood function for the cointegrating
vector(s). Section 4 slightly alters Pesaran et al. (2000)’s structure by only presenting the likelihood
ratio tests for cointegrating ranks as well as Theorems 2 and 3 specifying their limiting distributions.1

Section 5 thereafter provides the proofs for Theorems 2 and 3. Especially during the latter two
sections, this paper provides the proofs in much more detail than Pesaran et al. (2000), where the
corresponding proofs are presented in an extremely dense format. Finally, our paper concludes with
introducing diagnostic tests for the restrictions on the exogenous variables (proofs omitted): I.e.
whether the exogenous data are not cointegrated, and whether there is no impact of the endogenous
on the exogenous variables.

1Pesaran et al. (2000) proceed differently by presenting the theorems for all limit distributions together, while their

proofs are in the appendix.
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2 The VAR model, assumptions and deterministics

We start with outlining the VAR model specification for the vector process {zt}∞t=−∞, as in Pesaran
et al. (2000, p.295). Section 2 will follow their paper’s section 2 closely, which draws heavily on section
4 in Johansen (1991, pp.1558-61) - in contrast, we will elaborate more on the intermediate steps of,
and retain the notation of, Pesaran et al. (2000) in order to facilitate comprehension and comparison.
The basic idea is to transform the VAR model in (2), respectively its VAR(p) expression in levels
into a VMA(∞) expression in the differences for later use in the derivation of the test statistic. This
is done via an appropriate reformulation such that Granger’s representation theorem can be applied
(cf. Johansen (1991, p.1559)).
Let {zt}∞t=−∞ denote an m×1-dimensional vector random process. Moreover, let it be generated by
the vector autoregressive model of order p (VAR(p)):

ΦΦΦ(L)(zt −µµµ− γγγt) = et , t = 1, 2, . . . (1)

Here, L is the lag or backshift operator, µµµ and γγγ are fixed m×1 vectors and ΦΦΦ(L) is the m×m lag
polynomial of order p defined as ΦΦΦ(L) = Im −

∑p
i=1 ΦΦΦiLi, where ΦΦΦi are unknown m×m coefficient

matrices. Moreover the initial values (z0, . . . , z0−p+1) are assumed to be given. The assumptions on
{et} are stated below:

Assumption 1 The error process {et}∞t=−∞ is assumed to be identically normally distributed IN(0,Ω)
for all t, with Ω positive definite.

The lag polynomial ΦΦΦ(L) may be expressed as follows:

ΦΦΦ(L) = Im −
p∑
i=1

ΦΦΦiLi =

(
Im −

p∑
i=1

ΦΦΦi

)
︸ ︷︷ ︸

=ΦΦΦ(1)≡−ΠΠΠ

L+

(
Im −

p−1∑
i=1

ΓΓΓiLi
)

︸ ︷︷ ︸
≡ΓΓΓ(L)

(1− L) (2)

where ΓΓΓi = −
∑p
j=i+1 ΦΦΦj .

Proof of (2):

−ΠΠΠL+ ΓΓΓ(L)(1− L) = ImL−
p∑
i=1

ΦΦΦiL︸ ︷︷ ︸
+ΓΓΓ0L

+Im −
p−1∑
i=1

ΓΓΓiLi − ImL+
p−1∑
i=1

ΓΓΓiLi+1 =

I +
p∑
i=1

ΓΓΓi−1L
i −

p−1∑
i=1

ΓΓΓiLi = Im +
p∑
i=1

(ΓΓΓi−1 −ΓΓΓi)Li = Im −
p∑
i=1

ΦΦΦiLi = ΦΦΦ(L)

since ΓΓΓi−1 −ΓΓΓi = −
p∑
j=i

ΦΦΦj +
p∑

j=i+1

ΦΦΦj = −ΦΦΦi

thus we may re-express (1) as follows:

ΦΦΦ(L)zt = a0 + a1t+ et (3)

where

2



a0 ≡ −ΠΠΠµµµ+ (ΓΓΓ + ΠΠΠ)γγγ , a1 ≡ −ΠΠΠγγγ (4)

and ΓΓΓ ≡ ΓΓΓ(1). The result follows since Lµµµ = µµµ and Lγγγt = γγγ(t − 1). Moreover note that ΓΓΓ(L)γγγ =
γγγ −

∑p−1
i=1 ΓΓΓiLiγγγ = ΓΓΓ(1)γγγ.2

Proof of (3):

ΦΦΦ(L)zt = ΦΦΦ(L) (µµµ+ γγγ) + et = −ΠΠΠµµµ+ ΓΓΓ(L)(1− L)γγγt−ΠΠΠLγγγt+ et =

= −ΠΠΠµµµ+ ΓΓΓ(L)γγγt−ΓΓΓ(L)γγγ(t− 1)−ΠΠΠγγγ(t− 1) + et =

= −ΠΠΠµµµ+ ΓΓΓ(L)γγγ︸ ︷︷ ︸
=ΓΓΓγγγ

+ΠΠΠγγγ −ΠΠΠγγγt = a0 + a1t+ et

Furthermore, consider the identity ΓΓΓ ≡ ΓΓΓ(1) = −ΠΠΠ +
∑p
i=1 iΦΦΦi:

ΓΓΓ(1) = Im +
p−1∑
i=1

p∑
j=i+1

ΦΦΦj = Im + (p− 1)ΦΦΦp + . . .+ 1ΦΦΦ2

= Im +
p∑
i=2

(i− 1)ΦΦΦi +

(
−Im +

p∑
i=1

ΦΦΦi −ΠΠΠ

)
︸ ︷︷ ︸

0

= −ΠΠΠ +
p∑
i=1

iΦΦΦi

Finally, we may use (3) to express ∆zt = (1− L)zt as follows:

∆zt = ΠΠΠzt−1 +
p−1∑
i=1

ΓΓΓi∆zt−i + a0 + a1t+ et (5)

Now consider the hypothesis on the rank of ΠΠΠ:

Hypothesis Hm
r : rk(ΠΠΠ) = r r = 0, 1, . . . ,m

Under Hm
r we may express ΠΠΠ as the composition of two full-rank m× r matrices ααα and βββ:

ΠΠΠ
m×r

= ααα

m×r

βββ′

r×m
(6)

In this case one may define the m × (m − r) matrices ααα⊥ and βββ⊥ whose columns form the basis of
the kernel of ααα and βββ: viz. ααα′⊥ααα = 0 and βββ′⊥βββ = 0. While retaining hypotheses Hm

r , we adopt the
following two assumptions needed for the application of Theorem 1:

Assumption 2 The roots z of |ΦΦΦ(z)| = 0 are one or outside the unit circle: either |z| > 1 or z = 1.

Assumption 3 The (m−r)× (m−r) matrix ααα′⊥ΓΓΓβββ⊥ has full rank m− r.

2 Actually, any constant ζ is shorthand notation for ζ1 where 1 is the t-th element of an infinite vector 1 with all

elements equal to 1. So Lζ1t = ζ1t−1 = ζ1.
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Assumptions 2 and 3 enable us to invoke Granger’s representation theorem as it is used in Johansen
(1991, p.1559) in order to transform system (1) into a VMA(∞) representation. Theorem 1 below
reiterates Theorem 4.1 in Johansen (1991, p.1559) adjusted for our particular needs.

Theorem 1 Under Hm
r with ΠΠΠ = αααβββ′, rk(ααα) = rk(βββ) = r and under assumptions 2 and 3, ∆zt and

βββzt can be given initial distributions such that

• ∆zt − E (∆zt) is stationary ⇒ zt is I(1)

• βββ′zt − E (βββ′zt) is stationary

Furthermore, if the initial distributions are expressed in terms of {et}∞t=−∞ then ∆zt has a represen-
tation:

• ∆zt = C(L) (a0 + a1t+ et)

where C(1) ≡ C = βββ⊥ (ααα′⊥ΓΓΓβββ⊥)−1
ααα′⊥

and C(L) may be expressed as follows: C(L) = Im +
∞∑
j=1

CjL
j

The proof of Theorem 13 is one of the few omitted here since it largely parallels the one of Theorem
4.1 in Johansen (1991, pp.1159-61), only with adjusted deterministic terms.4 Theorem 1 implies
C(L)ΦΦΦ(L) = (1− L)Im, and, by setting C∗(L) = C(L)−C

(1−L) :

C(L) = Im +
∞∑
j=1

CjL
j = C + (1− L)C∗(L) (7)

Equation (7) provides a decomposition into level and difference terms similar to (2). One may as well

express C∗(L) as an infinite sum C∗(L) =
∞∑
j=0

C∗jL
j and denote C∗ ≡ C∗(1).

By applying (7), we get

∆zt = C(L) (a0 + a1t+ et) = Ca0 +

=C∗(L)0=0︷ ︸︸ ︷
C∗(L)(1− L)a0 +Ca1t+

=C∗a1︷ ︸︸ ︷
C∗(L)a1t− C∗(L)a1(t− 1)+

+ C(L)et = Ca0 + C∗a1︸ ︷︷ ︸
≡b0

+Ca1︸︷︷︸
≡b1

t+ C(L)et = b0 + b1t+ C(L)et =

= b0 + b1t+ Cet + C∗(L)∆et (8)

Adding up (8) yields

zt =
t∑
i=1

∆zi = tb0 + b1
t(t+ 1)

2
+ C

t∑
i=1

ei +
t∑
i=1

(C∗(L)ei − C∗(L)ei−1) + z0 =

= tb0 + b1
t(t+ 1)

2
+ C

t∑
i=1

ei + C∗(L) (et − e0) + z0 (9)

3 The basic idea of the proof is as follows: since rk(ΠΠΠ) < m, the AR representation is not directly invertible. One

proceeds by projecting on the spaces spanned by βββ and βββ⊥, respectively, and thus obtaining two invertible subsystems

in the differences and in the levels; the invertibility of the latter is guaranteed by Assumption 3. The subsequent

rearrangement in terms of ∆zt allows for C = βββ⊥
`
ααα′⊥ΓΓΓβββ⊥

´−1
ααα′⊥.

4 The reader may furthermore want to compare the proof of Theorem 4.2 in Johansen (1995).
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Expression (9) simplifies if we take into account the restrictions in (4): Since C(z)ΦΦΦ(z) = Im(1− z),
we have C(1)ΦΦΦ(1) = −CΠΠΠ = 0; Hence we obtain

b1 = Ca1 = C(−ΠΠΠγγγ) = 0 (10)

Moreover, noting that CΓΓΓ− C∗ΠΠΠ = Im,5 we may simplify b0 as follows:

b0 = Ca0 + C∗a1 = C (−ΠΠΠµµµ+ (ΓΓΓ + ΠΠΠ)γγγ) + C∗(−ΠΠΠγγγ) =

= −CΠΠΠµµµ︸ ︷︷ ︸
0

+(CΓΓΓ− C∗ΠΠΠ)︸ ︷︷ ︸
Im

γγγ + CΠΠΠγγγ = γγγ (11)

Finally, initialise µµµ = z0 − C∗(L)e0 to obtain from (9)

zt = µµµ+ γγγt+ C
t∑
i=1

ei + C∗(L)et (12)

Thus the restrictions (4) ensure that,in its VMA(∞) form, the long-run deterministic trending be-
haviour of {zt}∞t=−∞ is invariant to the rank of ΠΠΠ. If, however, the restriction a1 = −ΠΠΠγγγ did not hold,
b1 would in general be different from zero, and therefore a quadratic trend term would be present in zt
(cf. Pesaran et al. (2000, p.298)); except in the case of rk(ΠΠΠ) = m, which implies C = 0. In particular
it follows that under Hm

r there would be m−r independent quadratic time-trends in equation (12).
Hence under differing values of cointegrating rank r, quite different trend patterns should be observed
in the levels process {zt}∞t=−∞ (Ibid.). For the further derivation in sections 4 and 5, this notion is of
particular relevance.
In addition, note that (12) implies an inclusion of trending behaviour in the (trend-)stationary6 term
βββ′zt:

βββ′zt = βββ′µµµ+ (βββ′γγγ)t+ βββ′C∗(L)et (13)

Thus in general, βββ′γγγ, respectively a1 in (3) has to be estimated along with the cointegrating regression.
Imposing a co-trending restriction, i.e. excluding trending behaviour from the cointegrating regression
requires setting βββ′γγγ = 0 (if and only if a1 = 0 7 ). Imposing a1 = 0 would imply different asymptotic
behaviour, which leads in turn to the ”cases” known from the Johansen (1991) test.

3 Exogenous I(1) variables in the VECM log-likelihood

Noting that ΦΦΦ(L) may be expressed as in (2), we may rewrite (3) in the familiar VECM form

∆zt = a0 + a1t+
p−1∑
i=1

ΓΓΓi∆zt−i + ΠΠΠzt−1 + et (14)

In order to introduce exogeneity in the system, partition the m× 1 vector zt into the n× 1 vector yt
and the k × 1 vector xt, and partition et correspondingly into eyt and ext:

zt =
(
yt
xt

)
, et =

(
eyt
ext

)
(15)

5 Proof that CΓΓΓ − C∗ΠΠΠ = Im: for z 6= 1 we know: Im =
C(z)
(1−z)

ΦΦΦ(z) = ( C
(1−z)

+ C∗(z))(−ΠΠΠz + ΓΓΓ(z)(1 − z)) =

−CΠΠΠz
1−z

−C∗(z)ΠΠΠz+CΓΓΓ(z)+C∗(z)ΓΓΓ(z)(1−z), where CΠΠΠ = 0 as above. Now, as z → 1, we obtain: CΓΓΓ(1)−C∗(1)ΠΠΠ = Im
6 ”Stationary” in this case refers to βββ′zt − E(βββ′zt) being weakly covariance stationary.
7under Hm

r , a1 = αααβββ′γγγ = 0 ⇔ βββ′γγγ = 0, since ααα has full rank r.
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The covariance matrix of et may be partitioned accordingly, where, by Assumption 1, Ωyy and Ωxx
are positive definite:

Ω =

(
Ωyy Ωyx
Ωxy Ωxx

)
(16)

Thus Assumption 1 enables re-expressing et in terms of the independent processes {ext} and {ut}

ut = eyt − ΩyxΩ−1
xx ext , ut ∼ IN(0,Ωuu) (17)

Proof of (17): From the properties of normally distributed random variables we know the following:
Let the m× 1 random vector et ∼ N(0,Ω) and A be a fixed n×m matrix, while B is a fixed k ×m

matrix: Then Aet and Bet are independent normally distributed random variables if and only if
AΩB′ = 0. In our case, let

A =
(

In −ΩyxΩ−1
xx

)
, B =

(
0 Ik

)
Then we obtain ut ≡ Aet, ext = Bet and verify AΩB′ = 0 and E(utu′t) = AE(ete′t)A

′ = Ωyy −
ΩyxΩ−1

xxΩxy.

Accordingly, partition a0, a1 into n×1 and k×1 vectors, and ΓΓΓ and ΠΠΠ into n×m and k×m matrices:

ΠΠΠ =
(

ΠΠΠy

ΠΠΠx

)
, ΓΓΓ =

(
ΓΓΓy
ΓΓΓx

)
, a0 =

(
ay0
ax0

)
, a1 =

(
ay1
ax1

)
Now substitute (17) into (14) and define ΛΛΛ ≡ ΩyxΩ−1

xx for convenience(
∆yt
∆xt

)
=
(
ay0
ax0

)
+
(
ay1
ax1

)
t+

p−1∑
i=1

(
ΓΓΓyi
ΓΓΓxi

)(
∆yt−i
∆xt−i

)
+
(

ΠΠΠy

ΠΠΠx

)(
yt−1

xt−1

)
+
(

ΛΛΛext + ut
ext

)
(18)

Multiply from the left with
(

In −ΛΛΛ
)

in order to obtain

∆yt −ΛΛΛ∆xt = ay0 −ΛΛΛax0︸ ︷︷ ︸
≡c0

+ay1 −ΛΛΛax1︸ ︷︷ ︸
≡c1

t+
p−1∑
i=1

(ΓΓΓyi −ΛΛΛΓΓΓxi)︸ ︷︷ ︸
≡ψψψi

(
∆yt−i
∆xt−i

)
+

+(ΠΠΠy −ΛΛΛΠΠΠx)︸ ︷︷ ︸
≡ΠΠΠyy.x

(
yt−1

xt−1

)
+ ΛΛΛext + ut −ΛΛΛext︸ ︷︷ ︸

=ut

(19)

or, equivalently

∆yt = c0 + c1t+ ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyy.xzt−1 + ut (20)

Now we may state the following assumption:

Assumption 4 ΠΠΠx = 0, i.e. {xt}∞t=1 is weakly exogenous for ΠΠΠ

where we reiterate the definition of weak exogeneity with respect to our case:

Definition: A random process {xt}∞t=1 is weakly exogenous for the parameter vector
Θy and its elements, if there exists a sequential cut (i.e. (Θy,Θx) ∈ Θy ×Θx) such that
f(yt, xt|{xi}t−1

i=1, {yi}
t−1
i=1,Θy,Θx) = f(yt|{xi}ti=1, {yi}

t−1
i=1,Θy) × f(xt|{xi}t−1

i=1, {yi}
t−1
i=1,Θx); where

f(|) denotes the conditional density function.
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Here, setting ΠΠΠx = 0 is sufficient for this sequential cut, i.e. whatever the parameters for the condi-
tional distributions of ∆y and ∆x, the parameters of their joint distribution may be derived therefrom.
Assumption 4 implies ΠΠΠ can be efficiently estimated without taking into account the law of xt, since
ΠΠΠ does not affect the long-run evolution of xt. This implies firstly that ΠΠΠyy.x = ΠΠΠy and, secondly,
that the elements of {xt}∞t=1 are not cointegrated among themselves. Moreover, since xt does not
depend on the levels of yt, while vice versa this dependence exists, xt may be considered as long-run
forcing for yt (Granger and Lin, 1995). Finally, Assumption 4 implies a reformulation of hypothesis
Hm
r , since r = rk(ΠΠΠ) can at most be n < m:

Hypothesis Hr : rk(ΠΠΠ) = rk(ΠΠΠy) = r r = 0, 1, . . . , n

Equivalently, Assumption 4 implies ax1 = −ΠΠΠxγγγ = 0, a fact to be considered when substituting (20)
into (18) 8

∆yt = c0 + c1t+ ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (21)

∆xt = ax0 +
p−1∑
i=1

ΓΓΓxi∆zt−i + ext (22)

Moreover, since ax1 = 0, the expression for c1 reduces to c1 = ay1 − ΛΛΛax1 = ay1. Hence the
restrictions on c0 and c1 introduced in (3) modify to

c0 = ay0 −ΛΛΛax0 = −ΠΠΠyµµµ+
(
ΓΓΓy − ΩyxΩ−1

xxΓΓΓx + ΠΠΠy

)
γγγ , c1 = ay1 = −ΠΠΠγγγ (23)

Concerning whether or not the restrictions in (23) on c0 and c1 affect the further derivation of the
test statistics, Pesaran et al. (2000) specify five cases, similar to the five cases of the Johansen test
(Johansen, 1995, pp.211-212).9

Hypotheses on deterministic terms - five cases

• Case I: No intercepts, no trends, i.e. µµµ = 0 and γγγ = 0, which implies c0 = 0 and c1 = 0. The
structural VECM (21) reduces to

∆yt = ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (24)

• Case II: restricted intercepts, no trends, i.e. c0 as in (23) but γγγ = 0, which implies c1 = 0. The
structural VECM (21) then becomes

∆yt = (−ΠΠΠyµµµ) + ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (25)

8respectively multiply (18) from the left with

 
In −ΛΛΛ

0 Ik

!
9Note that cases III and V differ from Johansen (1995, p.81, p.211) in that Johansen’s Case III includes an additional

trend term and his Case V includes a quadratic trend.
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• Case III: unrestricted intercepts, no trends: c0 is to be estimated freely (i.e. it is not restricted
to (23)), but γγγ = 0 implies c1 = 0. Consequently

∆yt = c0 + ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (26)

• Case IV: unrestricted intercepts, restricted trends: c1 = −ΠΠΠγγγ, as in (23), but ignore the restric-
tions on c0. We obtain for (21):

∆yt = c0 −ΠΠΠyγγγt+ ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (27)

• Case V: unrestricted intercepts, unrestricted trends: ignore the restrictions in (23) both for c0

and c1. Therefore

∆yt = c0 + c1t+ ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠyzt−1 + ut (28)

Like Pesaran et al. (2000, pp.301-303), we proceed with concentrating on Case IV, which demonstrates
both the treatment of restricted and of unrestricted deterministic terms (including a trend). First,
note that under our modified Assumption Hr (rk(ΠΠΠy) = r), we may express

ΠΠΠy

n×r

= αααy
n×r

βββ′

r×m

, rk(αααy) = rk(βββ) = r
(29)

here, βββ, respectively αααy, is identified up to an r × r non-singular matrix.10 Now consolidate ΠΠΠy by
first defining

βββ∗
(m+1)×r

≡
(−γγγ′

Im

)
(1+m)×m

βββ

m×r

, ΠΠΠy∗

n×(m+1)

≡ αααyβββ
′
∗ , z∗t−1

(1+m)×1

≡
(

t
zt−1

)
(30)

which yields

ΠΠΠy∗z
∗
t−1 = −ΠΠΠyγγγt+ ΠΠΠy∆zt−1 = αααyβββ

′
(
−γγγ Im

)( t

zt−1

)
= αααyβββ

′
∗z
∗
t−1

Consequently we may rewrite the VECM model from Case IV in (27) as

∆yt = c0 + ΛΛΛ∆xt +
p−1∑
i=1

ψψψi∆zt−i + ΠΠΠy∗z
∗
t−1 + ut (31)

10 I.e. αααyβββ′ = (αααyK−1)(Kβββ′) for any non-singular matrix K.

8



Proceed by stacking zt etc. into ”T × k”-type matrices11

∆Y =
T×n


∆y′1

...
∆y′T

 ιιι =
T×1


1
...
1

 ∆X =
T×k


∆x′1

...
∆x′T

 U =
T×n


u′1
...
u′T



∆Z−i =
T×m


∆z′1−i

...
∆z′T−i

 τττ =
T×1


1
...
T

 Z−1 =
T×m


z′0
...

z′T−1


Moreover define the meta-structures

Z∗−1 =
T×(m+1)


z∗0
′

...
z∗T−1

′

 =
(
τττ Z−1

)
Ψ̆ΨΨ =

(
ΛΛΛ ψψψ1 . . . ψψψp−1

)

∆Z∗−
T×(k+(p−1)m)

=
(

∆X ∆Z−1 . . . ∆Z−(p−1)

)
=


∆x′1 ∆z′0 . . . ∆z′1−p
∆x′2 ∆z′1 . . . ∆z′2−p

...
...

...
∆x′T ∆z′T−1 . . . ∆z′T−p


Note that sample size T is redefined by deducting p from the original T , such that the negative indexes
above make sense. Hence

∆Z−Ψ̆ΨΨ
′
= ∆XΛΛΛ′ + ∆Z−1ψψψ

′
1 + . . .+ ∆Z−(p−1)ψψψ

′
p−1 (32)

whose t-th row is (ΛΛΛxt +
∑p−1
i=1 ψψψizt−i)

′. With these definitions at hand, we may rewrite (31) in its
stacked form:

∆Y = ιιιc′0 + ∆Z−Ψ̆ΨΨ
′
+ Z∗−1ΠΠΠ

′
y∗ + U (33)

In order to proceed to maximum likelihood estimation, consider the density function of the error term
in (33), which by 1 is from the multivariate normal distribution

f(ut) =
(

1√
2π

)n 1√
|Ωuu|

exp
(
−1

2
u′tΩ

−1
uuut

)
(34)

As by Assumption 1 the individual ut are independent, we obtain f(U) = f(ut)T . Hence the log-
likelihood of ΘΘΘ is represented as follows, where ΘΘΘ is a vector collecting the unknown parameters in
Ωuu, c0, Ψ̆ΨΨ and ΠΠΠy

` (ΘΘΘ) = −nT
2

ln (2π)− T

2
ln |Ωuu| −

1
2

(
T∑
t=1

u′tΩuuut

)
︸ ︷︷ ︸

=tr(UΩuuU′)

(35)

11 Here we depart from Pesaran et al. (2000, p.302), since they stack the corresponding variables into ”k × T”-type

matrices, i.e. the transposed versions of the ones used in our paper. The reason for this departure is to reduce the need

for the numerous transpositions appearing in Pesaran et al. (2000).
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Here, tr denotes the trace function. Start to ”concentrate out”12 parameters by replacing the param-
eters c0 and Ψ̆ΨΨ with their maximisers obtained from the first order conditions of the likelihood with
respect to these parameters. This translates into replacing U with the OLS residual Û and Ωuu with
its ML estimator Ω̂uu. Note that Ω̂uu = 1

T Û′Û, hence

tr
(
ÛΩ̂−1

uuÛ
′
)

= tr
(
Û′ÛΩ̂−1

uu

)
= tr

(
TΩuuΩ−1

uu

)
= tr (T In) = Tn

which by substituting into (35) yields

` (ΘΘΘ) = −nT
2

(1 + ln (2π))− T

2
ln
∣∣∣∣ 1T Û′Û

∣∣∣∣ (36)

Now suppose the ”true”ΠΠΠy∗ is known and concentrate the parameters c0 and Ψ̆ΨΨ out via their estima-
tors. For this purpose, represent Û in (37)

Û = ∆Y − ιιιĉ′0 + ∆Z−
ˆ̆ΨΨΨ′ + Z∗−1ΠΠΠ

′
y∗ (37)

via the Frisch-Waugh theorem: Let

Ẑ∗−1 = Z∗−1 − ιιιĉ′01 −∆Z−
ˆ̆ΨΨΨ′

1 =
((

ιιι ∆Z−
)′ (

ιιι ∆Z−
))−1 (

ιιι ∆Z−
)′

∆Z∗−1

∆Ŷ = ∆Y − ιιιĉ′02 −∆Z−
ˆ̆ΨΨΨ′

2 =
((

ιιι ∆Z−
)′ (

ιιι ∆Z−
))−1 (

ιιι ∆Z−
)′

∆Y

...resulting in:
Û = ∆Ŷ − Ẑ∗−1ΠΠΠ

′
y∗ (38)

Then (36) collapses to the log-likelihood of ΠΠΠy∗ as in (39).

` (ΠΠΠy∗) = −nT
2

(1 + ln (2π))− T

2
ln
∣∣∣∣ 1T (∆Ŷ − Ẑ∗−1ΠΠΠ

′
y∗

)′ (
∆Ŷ − Ẑ∗−1ΠΠΠ

′
y∗

)∣∣∣∣︸ ︷︷ ︸
=|T−1Û′Û|

(39)

where maximizing (39) boils down to minimizing its latter part, the determinant |T−1Û′Û|. In order
to re-express (39), introduce the notation

1
T

(
∆Ŷ′

Ẑ∗′−1

)(
∆Ŷ Ẑ∗−1

)
=

(
Syy Syz

Szy Szz

)
(40)

thus the determinant |T−1Û′Û| reduces to

| 1
T

Û′Û| =
∣∣∣∣ 1T (∆Ŷ′∆Ŷ −∆Ŷ′Ẑ∗−1ΠΠΠ

′
y∗ −ΠΠΠy∗Ẑ∗′−1∆Ŷ −ΠΠΠy∗Ẑ∗′−1Ẑ

∗
−1ΠΠΠ

′
y∗

)∣∣∣∣ =
=
∣∣Syy − SyzΠΠΠ′y∗ −ΠΠΠy∗Szy + ΠΠΠy∗SzzΠΠΠ′y∗

∣∣ (41)

12For a brief outline of concentrated likelihood with respect to our problem, refer to Hayashi (2000, p.524) or Hamilton

(1994, p.638)
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Furthermore, assume that only the ”true” βββ∗ is known and thus concentrate αααy out by its OLS
estimator α̂ααy. The corresponding residual of this regression is then:

Û =
(
In − Ẑ∗−1βββ∗

(
βββ′∗Ẑ

∗′
−1Ẑ

∗
−1βββ∗

)−1

βββ′∗Ẑ
∗′
−1

)
∆Ŷ (42)

By the properties of the projecting matrix in (42), inserting the determinant |T−1Û′Û| into equation
(39) results in

` (βββ∗|r) = −nT
2

(1 + ln (2ΠΠΠ))− T

2
ln
∣∣∣Syy − Syzβββ∗ (βββ′∗Szzβββ∗)

−1
βββ′∗Szy

∣∣∣ (43)

Here, hypothesis Hr, i.e. the rank of βββ∗ plays an important role, hence we explicitly condition on

Hr. Now note that since

∣∣∣∣∣
(

A B

C D

)∣∣∣∣∣ = |A||D − CA−1B| = |D||A − CD−1B|,13 we obtain for the

matrix below∣∣∣∣∣
(

Syy Syzβββ∗

βββ′∗Szy βββ′∗SzySyzβββ∗

)∣∣∣∣∣ = |βββ′∗Szzβββ∗|
∣∣∣Syy − Syzβββ∗ (βββ′∗Szzβββ∗)

−1
βββ′∗Szy

∣∣∣ =
= |Syy|

∣∣βββ′∗Szzβββ∗ − βββ′∗SzyS−1
yy Syzβββ∗

∣∣
Consequently, minimizing the determinant |T−1Û′Û| corresponds to minimizing∣∣∣Syy − Syzβββ∗ (βββ′∗Szzβββ∗)

−1
βββ′∗Szy

∣∣∣ = |Syy|
∣∣βββ′∗ (Szz − SzyS

−1
yy Syz

)
βββ∗
∣∣

|βββ′∗Szzβββ∗|
(44)

with respect to βββ∗. The minimization of (44) is to be achieved by applying Lemma A.8 of Johansen
(1995, p.244), as it is quoted below

Lemma A.8 Let M be symmetric and positive semi-definite and N symmetric and positive
definite. The function

f(x) = |x′Mx|/|x′Nx|

is maximised among all p × r matrices by x̂ = (v1, . . . , vr), and the maximal value is∏r
i=1 λi, where again λi and vi are solutions to the eigenvalue problem

|λN −M | = 0

where we assume that λ1 ≥ . . . ≥ λp > 0. We can also choose x̂ times any non-singular
r × r matrix as the maximizing argument. [...]

The proof of this lemma is omitted here for brevity, but is given in Johansen (1995, p.224-226).
Note that under the conditions above, minimizing f(x) = |x′Mx|/|x′Nx| corresponds to maximizing
|x′Nx|/|x′Mx|, i.e solving |λM − N | = 0 and the minimised value is then f(x̂) = (

∏
i λi)

−1. By
redefining δ = λ−1, minimizing f(x) corresponds to solving |δN −M | = 0 and the minimised value is∏r
i=1 δi.

13 since

˛̨̨̨
˛
 

A B

C D

!˛̨̨̨
˛ =

˛̨̨̨
˛
 

A B

C D

! 
I −A−1B

0 I

!˛̨̨̨
˛ = |A||D − CA−1B|, similarly we obtain = |D||A −

CD−1B|
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This implies that for our case the maximum likelihood estimator β̂ββ∗ for βββ∗ is given by the eigenvectors
of the generalised eigenvalues λ̂ solving∣∣∣δ̂Szz − (Szz − SzyS

−1
yy Syz

)∣∣∣ = | λ̂︸︷︷︸
=1−δ̂

Szz − SzyS
−1
yy Syz| = 0 (45)

where we re-defined λ ≡ 1− δ; By the definition given in Hamilton (1994, p. 631), λ corresponds to
the canonical correlations between ∆Ŷ and Ẑ∗′−1.

14 The concentrated maximised likelihood of βββ∗ is
therefore

`cT (r) = −nT
2

(1 + ln (2ΠΠΠ))− T

2
ln

(
|Syy|

r∏
i=1

δ̂i

)

= −nT
2

(1 + ln (2ΠΠΠ))− T

2
ln |Syy| −

T

2

r∑
i=1

ln(1− λ̂i) (46)

and the maximiser β̂ββ∗ is given by the corresponding generalised eigenvectors. Note that the maximised
log-likelihood `cT is only a function of r, the cointegrating rank.
Up to now we have outlined the maximisation of the log-likelihood for βββ∗ in Case IV; concerning the
other four cases, the procedure of concentration in (37) is to be put slightly differently:

• Case I: c0 = 0 and c1 = 0: define Z∗−1 = Z−1 and let ∆Ŷ and Ẑ∗−1 be the residuals of regressing
∆Y and Z∗−1 on ∆Z−.

• Case II: c0 = −ΠΠΠyγγγ and c1 = 0: since the intercept c0 is only to be found in the cointegrating
regression, define Z∗−1 = (ιιι, Z−1) and let ∆Ŷ and Ẑ∗−1 be the residuals of regressing ∆Y and
Z∗−1 on ∆Z−.

• Case III: c0 unrestricted and c1 = 0: since the intercept affects the entire VECM, define
Z∗−1 = Z−1 and let ∆Ŷ and Ẑ∗−1 be the residuals of regressing ∆Y and Z∗−1 on (ιιι,∆Z−).

• Case IV: c0 unrestricted and c1 = ΠΠΠyγγγ: since the trend term is in the cointegrating regression,
define Z∗−1 = (τ,Z−1), and concentrate out by constructing ∆Ŷ and Ẑ∗−1 as in (37).

• Case V: c0 and c1 unrestricted: since both deterministic terms are present in the VECM model
directly, concentrate out by constructing ∆Ŷ and Ẑ∗−1 as the residuals of regressing ∆Y and
Z−1 on (ιιι, τττ ,∆Z−).

14 Solving for the generalised eigenvalue problem in (45), respectively solving for the eigenvalues ζ of S−1
zz SzyS−1

yy Syz

may be less straightforward than solving for the eigenvalues of a symmetric matrix. This obstacle is usually eluded by

the following procedure: Let A, B be two positive definite symmetric matrices, with the eigenvalue problem ABv = ζv,

where ζ denotes the eigenvalues, and v the eigenvectors of AB. We then may factorise B = LL′. (This decomposition

may be e.g. easily obtained from the eigenvectors and eigenvalues of B.) Hence ABv = ALL′v = ζv. Multiply with L′

from the right and denote w ≡ L′v to obtain L′ALw = ζw. Hence the eigenvalues of AB are identical with those of

L′AL. The eigenvectors v of AB may be recovered by v = L′−1w.
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4 The test for cointegrating rank

Pesaran et al. (2000) proceed by constructing likelihood ratio test-statistics out of (46). Subsequently
they weaken the normal distribution assumption on et and hence ut15 by stating the appropriate
assumptions in order to ensure that a multivariate invariance principle (as in Phillips and Solo (1992))
can be applied, i.e. the scaled cumulated sum of et converges to a multivariate Brownian motion
(conditional on past zt−i). This allows for conclusions on the asymptotic behaviour of likelihood-
ratio statistics constructed out of (46).
Out of the likelihood defined in equation (46), we may test the null Hr against two alternatives in
Tests 1 and 2. Test 1 examines the alternative hypothesis whether the cointegrating rank might be
r + 1 versus the null of cointegrating rank r:

Test 1 Hr against Hr+1

The log-likelihood ratio statistic for testing Hr : rk(ΠΠΠy) = r against Hr+1 : rk(ΠΠΠy) = r+1 is given by

LR (Hr|Hr+1) = −T ln
(
1− λ̂r+1

)
(47)

where λ̂r+1 is the (r+1)-th largest eigenvalue from equation (45), applying the appropriate definitions
for ∆Ŷ and Ẑ∗−1 (as on p. 7).

In contrast, Test 2 is tests Hr against the alternative of full cointegrating rank, that is, zero unit
roots, respectively stationarity of yt.

Test 2 Hr against Hn

The log-likelihood ratio statistic for testing Hr : rk(ΠΠΠy) = r against Hn : rk(ΠΠΠy) = n (stationarity) is
given by

LR (Hr|Hn) = −T
n∑

i=r+1

ln
(
1− λ̂i

)
(48)

where λ̂i is the i-th largest eigenvalue from equation (45), applying the appropriate definitions for ∆Ŷ
and Ẑ∗−1.

In order to derive the asymptotic behaviour of test statistics 1 and 2 under more general conditions
than just normal distribution of et, we invoke Assumption 5 below (cf. Assumption 4.1, Pesaran et al.
(2000, p.304)).

Assumption 5

a. The error process {et}∞t=−∞ is such that E(et|{zt−i}t−1
i=−∞, z0) = 0 and Var(et|{zt−i}t−1

i=−∞, z0) =
Ωee, with Ωee being positive definite.

b. For the conditional term ut = eyt − ΩyxΩ−1
yx ext, assume E(ut|xt, {zt−i}t−1

i=−∞, z0) = 0 and
Var(ut|xt, {zt−i}t−1

i=−∞, z0) = Ωuu

c. suptE(||et||s) <∞ for some s > 2

15Note that in order to carry out conditional inference on ut, Pesaran et al. (2000, p.304) introduce a conditional

linearity assumption as in Assumption 5(b) (cf. p.15).
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Assumption 5 weakens the normality assumption 1 and, together with assumptions 2, 3 and 4, allows
to infer the asymptotic behaviour for the two likelihood ratio statistics (under Hr) as given in Theo-
rems 2 and 3.
First, denote the m-dimensional standard Brownian motion Wm(a), a ∈ [0, 1] with variance matrix Im
and partition it into the (n−r)- and k-dimensional sub-vector independent Brownian motions Wn−r(a)
and Wk(a): Wm(a) = (Wn−r(a)′,Wm(a)′)′. Moreover denote the demeaned (m−r) Brownian motion
W̃m−r(a) and the demeaned and de-trended Brownian motion Ŵm−r(a) as follows (Pesaran et al.,
2000, p.306)16

W̃m−r(a) ≡Wm−r(a)−
∫ 1

0

Wm−r(a)da (49)

Ŵm−r(a) ≡ W̃m−r(a)− 12
(
a− 1

2

)∫ 1

0

(
a− 1

2

)
W̃m−r(a)da (50)

Under this conditions, Pesaran et al. (2000, pp.306-307) derive the following statements on the asymp-
totic behaviour of the test statistics LR (Hr|Hr+1) and LR (Hr|Hn):

Theorem 2 Under Hr and Assumptions 2, 3, 4 and 5, the limit distribution of the test statistic
LR (Hr|Hr+1) is given by the distribution of the maximum eigenvalue of∫ 1

0

dWn−r(a)Fm−r(a)
′
(∫ 1

0

Fm−r(a)Fm−r(a)′da
)−1 ∫ 1

0

Fm−r(a)dWn−r(a)′ (51)

where

Fm−r(a) =



Wm−r(a) Case I
(Wm−r(a)′, 1)′ Case II
W̃m−r(a) Case III
(W̃m−r(a)′, a− 1/2)′ Case IV
Ŵm−r(a) Case V


a ∈ [0, 1] (52)

Theorem 3 Under Hr and Assumptions 2, 3, 4 and 5, the limit distribution of the test statistic
LR (Hr|Hn) is given by the distribution of

tr

[∫ 1

0

dWn−r(a)Fm−r(a)
′
(∫ 1

0

Fm−r(a)Fm−r(a)′da
)−1 ∫ 1

0

Fm−r(a)dWn−r(a)′
]

(53)

where Fm−r(a) is specified according to cases as in (52).

Note that Theorems 2 and 3 only apply to the case where Assumption 4 holds and the process of
exogenous variables {xt} is driven by k I(1) processes (i.e. the elements of {xt} are not cointegrated
among themselves).

16 To visualise the composition of the demeaned and detrended expression Ŵm−r in (49), imagine a finite data

matrix WT with observations wt. By the Frisch-Waugh-Theorem, WT can be demeaned and detrended by first

constructing W̃T (a demeaned WT ) and τ̃ττ (a demeaned vector τττ as on p.9, i.e. τ̃ττ = τττ − ιιι(T + 1)/2). Then the

demeaned and detrended vector ŴT may be constructed as ŵt = w̃t − (t− (T + 1)/2)(τ̃ττ ′τ̃ττ)−1τ̃ττ ′W̃T . In the limit, this

expression corresponds to the Wiener functional Ŵ (a) = W̃ (a) − (a − 1/2)(
R 1
0 (a− 1/2)2da)−1

R 1
0 (a− 1/2)W (a)da,

where
R 1
0 (a− 1/2)2da = 1/12.
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5 Asymptotic distribution for cointegrating rank test

This section will provide the proof for Theorems 2 and 3.17 For this purpose it will combine material
of Section 4 and Appendix A in Pesaran et al. (2000) and the corresponding sections in Johansen
(1991, section 2, appendix A) and Johansen (1995, section 10, section 11). The section starts with
lining out the foundations needed for an appropriate convergence of the partial sums involved, and
then proceeds with reiterating several lemmata from Johansen (1991), or the corresponding versions
provided by Pesaran et al. (2000) when needed. As in the latter article, the focus is on the asymptotics
for the test statistic in Case IV - the other cases may be covered by slightly altering the proofs given
in this section. The section closes with a proof that under Hr, the n−r smallest roots of (46) converge
to an expression that does not depend on nuisance terms and thus allows for asymptotic distributions
not affected by these.

Preliminary results

Remember from equation (8) that we have C(L) =
∑∞

0 CjL
j , which can be decomposed into

C(L) = C − (1 − L)C∗(L), where C∗(L) =
∑∞

0 C∗jL
j , C∗j =

∑∞
k=j+1 Ck. From this we may in-

fer that
∑∞

1 j|Cj | < ∞ implies
∑∞

1 |C∗j | < ∞ and C(1) = C < ∞ (Phillips and Solo, 1992, p.972).
Assumptions 2 and 3 together with the VAR(p) specification (1) ensure that this requirement is sat-
isfied, i.e.

∑∞
1 j|Cj | <∞ (Pesaran et al. (2000, p.305)).

Furthermore, Phillips and Solo (1992, Theorem 3.15(b) p.983) state that if (a) we have a martingale
difference sequence18 {et} with constant conditional variance (as in Assumption 5(a)) and (b) restric-
tions on the moments as in Assumption 5(c), and (c)

∑∞
1 j|Cj | < ∞, then an invariance principle

applies such that (cf. Pesaran et al. (2000, p.305)):

SeT (a) =
1√
T

[aT ]∑
s=1

es ⇒ Bm(a) a ∈ [0, 1] (54)

where [aT ] denotes the integer fraction of aT , and Bm(a) is an m-dimensional Brownian motion with
variance matrix Ωee; i.e. Bm(a) = Ω

1
2
eeW (a) where W (a) is a vector-Brownian motion with indepen-

dent elements.
Furthermore, note that Assumption 5(b) ensures that even when relaxing the normality as-
sumption on {et}, E(ut) is still linear in ext, respectively the condititonal expected value is
E(eyt|xt, {zt−i}t−1

i=−∞, z0) = −ΩyxΩ−1
yx ext. Together with the assumption on the variance of ut, this

puts the constant conditional variance to Var(eyt|xt, {zt−i}t−1
i=−∞, z0) = Ωuu. Hence we may retain

the notion of (31) being a conditional model for ∆yt given ∆xt, {∆zt−i}t−1
i=−∞ and the levels {zt} -

upon which we may conduct conditional inference (Pesaran et al., 2000, pp. 304-5).
The continuous mapping theorem (as in Johansen (1995, Theorem B.5, p.243)) states that if
SeT (a) ⇒ Bm(a) on C [0, 1]19 , and F() is any continuous functional on C [0, 1] with values in Rm,

17 The purpose of this paper to provide the proofs leading to Theorems 2 and 3 in the main body of the article, and

in a consolidated fashion.
18Moreover, a technical requirement by Phillips and Solo (1992) is that {et} is strongly uniformly integrable, viz.

there exists a dominating random variable Z, for which E|Z| < ∞, such that P(|et| ≥ x) ≤ cP(|Z| ≥ x)∀x ≥ 0, ∀t ≥ 1

and some constant c.
19where C [0, 1] is the space of continuous functions on the unit interval.
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then F(SeT (a)) ⇒ F(Bm(a)).
Referring to the model in (14), recall that et was partitioned into n- and k-dimensional subvectors
eyt and ext; with covariance matrix as in (16)

SeT (a) =
1√
T

[aT ]∑
s=1

(
eyt
ext

)
⇒ Bm(a) =

(
Bn(a)
Bk(a)

)
E(BmB′m) =

(
Ωyy Ωyx
Ωxy Ωxx

)
≡ Ωee (55)

Moreover, remember from (17) that ut = eyt −ΩyxΩ−1
xx ext = eyt −ΛΛΛext; via the continuous mapping

theorem we therefore may express the convergence of the partial sums of ut as follows:

1√
T

[aT ]∑
s=1

(
ut
ext

)
=

(
In −ΛΛΛ
0 Ik

)
1√
T

[aT ]∑
s=1

(
eyt
ext

)
⇒

⇒

(
In −ΛΛΛ
0 Ik

)(
Bn(a)
Bk(a)

)
=
(
Bn(a)−ΛΛΛBk(a)

Bk(a)

)
≡
(
B∗n(a)
Bk(a)

)
= B∗m(a) (56)

where

E(B∗nB
′
k) = E(BnB′k)−ΛΛΛE(BkB′k) = Ωyx − ΩyxΩ−1

xxΩxx = 0,

E(B∗nB
∗
n
′) = E(BnB′n −ΛΛΛBkB′n +BnB

′
kΛΛΛ

′ −ΛΛΛBkB′kΛΛΛ
′) = Ωyy − ΩyxΩ−1

xxΩxy ≡ Ωuu

hence

E(B∗mB
∗
m
′) =

(
E(B∗nB

∗
n
′) E(B∗nB

′
k)

E(BkB∗n
′) E(BkB′k)

)
=

(
Ωuu 0
0 Ωxx

)
Proceed by defining

ααα⊥
m×(m−r)

≡
 ααα⊥y

n×(n−r)
0
n×k

0
k×(n−r)

ααα⊥x
k×k

 ααα′⊥ααα = 0

where ααα⊥x is any k×k-dimensional non-singular matrix.
Next, define the following

δδδ

(m+1)×(m−r)

≡
(
−γγγ′

Im

)
βββ⊥ ξξξ

(m+1)×1

≡


1
0
...
0

 BT

(m+1)×(m+1−r)

≡
(
δδδ 1/

√
Tξξξ

)

According to these definitions, (βββ,βββ⊥) provide a basis for Rm, and the matrix (βββ∗, ξξξ, δδδ) provides a
basis for Rm+1. Investigate the interactions of these terms with zt by recalling equation (12):

zt = µµµ+ γγγt+ C
t∑
i=1

ei + C∗(L)et

Hence we obtain for T−1/2δδδ′z∗t :

1√
T
δδδ′z∗t = −βββ′⊥γγγt+ βββ′⊥zt =

1√
T
βββ′⊥µµµ+

1√
T
βββ′⊥C

∑
s

es +
1√
T
βββ′⊥C

∗(L)et

⇒ βββ′⊥CBm(a) (57)
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The convergence to βββ′⊥CBm(a) as T → ∞ obtains since βββ′⊥µµµ is fixed, and βββ′⊥C
∗(L)et is a station-

ary term, hence by multiplication with 1/
√
T it asymptotically vanishes. Similarly, we get by the

continuous mapping theorem

1√
T
δδδ′ (z∗t − z̄∗t ) ⇒ βββ′⊥CB̃m(a) (58)

where B̃m(a) denotes the demeaned Brownian motion Bm(a) −
∫ 1

0
Bm(a)da (cf. Johansen (1995,

p.145)). The differing deterministic terms affect the asymptotic behaviour, while the stationary
terms again vanish. In contrast to above, consider βββ′∗z

∗
t :

βββ′∗z
∗
t = −βββ′γγγt+ βββ′zt = βββ′µµµ+ βββ′C︸︷︷︸

=0

∑
s

es + βββ′C∗(L)et = Op(1) (59)

where Op(1) is shorthand notation for a term such that plimOp(1) = 0 as T →∞. The fact βββ′C = 0
stems from Theorem 1, where C = βββ⊥ (ααα′⊥ΓΓΓβββ⊥)−1

ααα′⊥. Equations (58) and (59) illustrate that βββ′∗z
∗
t

represents the r-dimensional stationary processes in the system, while δδδ′z∗t represents the (m−r)
independent I(1) processes.
Note that in addition we have

1
T
ξξξ′z∗t =

t

T
⇒ a (60)

We may use the results for z∗t for approximating the corresponding ones for Ẑ∗−1: This variable is
equivalent to Z−1, but demeaned, and has the stationary terms roughly eliminated. The restrictions
on C∗(L) from p.15 ensure that the corresponding terms do not matter in the limit. We therefore
may write

βββ′∗
1
T

Ẑ∗′−1Û =
1
T

T∑
t=1

βββ′∗ẑ
∗
t−1û

′
t ≈

1
T

T∑
t=1

βββ′∗(z
∗
t−1 − z̄∗) (ut − ūt)′︸ ︷︷ ︸

ũ′t

=
1
T

T∑
t=1

βββ′C∗(L)et−1ũ
′
t =

=
1
T

T∑
t=1

βββ′C∗(L)et−1ẽ
′
t

(
In
−ΛΛΛ′

)
p→ 0 (61)

where the equivalence ũt = (In, −ΛΛΛ′) ẽt follows from equation (17). The convergence to 0 follows
since the process {et} is assumed to be not autocorrelated.
For δδδ′ 1

T Ẑ∗′−1Û, the result is entirely different: First, note that T−1
∑T
t=1

∑t−1
s=1 ese

′
t converges to∫ 1

0
Bm(a)dBm(a)′; Therefore, we obtain:

δδδ′
1
T

Ẑ∗′−1Û =
1
T

T∑
t=1

δδδ′ẑ∗t−1û
′
t ≈

1
T

T∑
t=1

δδδ′(z∗t−1 − z̄∗)ũ′t =

=
1
T

T∑
t=1

(βββ′⊥C
t−1∑
s=1

es + βββ′⊥C
∗(L)et−1)ũ′t (62)

For the same reasons as in (61), we may omit the latter term βββ′⊥C
∗(L)et−1; thus by applying the

continuous mapping theorem, we obtain for (62):

δδδ′
1
T

Ẑ∗′−1Û ≈= βββ′⊥C
1
T

T∑
t=1

(
t−1∑
s=1

es

)
ẽ′t

(
In
−ΛΛΛ′

)
⇒ βββ′⊥C

∫ 1

0

Bm(a)dBm(a)′
(

In
−ΛΛΛ′

)
(63)
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Concerning limiting covariance matrices, Phillips and Solo (1992, Theorem 3.16, p.983) prove that
under assumptions20 2, 3, 4 and 5,21

Szz =
1
T

Ẑ∗′−1Ẑ
∗
−1

p→ Σzz (64)

These results enable the derivation of Lemma 1 (compare the corresponding lemmas in Johansen
(1991, Lemma A.1, p.1567) and Johansen (1995, Lemma 10.3, p.146), as well as several results in
Pesaran et al. (2000, p.331))

Lemma 1 Some results on covariance matrices

• βββ′∗Szzβββ∗
p→ βββ′∗Σzzβββ∗ (65)

• βββ′∗Szy = βββ′∗
1
T

Ẑ∗′−1∆Ŷ
p→ βββ′∗Σzy = βββ′∗Σzzβββ∗ααα

′
y (66)

• Syy =
1
T

∆Ŷ′∆Ŷ
p→ Σyy = Ωuu +αααyβββ

′
∗Σzzβββ∗ααα

′
y (67)

•
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy =

(
ααα′yΩ

−1
uuαααy

)−1
ααα′yΩ

−1
uu (68)

• Σ−1
yy − Σ−1

yy αααy
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy = ααα⊥y

(
ααα⊥y

′
Σyyααα⊥y

)−1

ααα⊥y
′
=

ααα⊥y

(
ααα⊥y

′
Ωuuααα⊥y

)−1

ααα⊥y
′
= Ω−1

uu − Ω−1
uuαααy

(
ααα′yΩ

−1
uuαααy

)−1
ααα′yΩ

−1
uu (69)

Proof of Lemma 1:
Noting (64), (65) follows via the continuous mapping theorem. For (66) we obtain

βββ′∗Szy = βββ∗
1
T

Ẑ∗′−1

(
Ẑ∗−1ΠΠΠ

′
y∗ + U

)
= βββ′∗SzzΠΠΠ

′
y∗ +

1
T
βββ′∗Ẑ

∗′
−1U

p→ βββ′∗Σzzβββ∗ααα
′
y

since 1
T βββ

′
∗Ẑ

∗′
−1U→ 0 as in (61). This term must be equivalent to the (prob) limit βββ′∗Σzy, which exists

and is constant by the same conditions as in (64). Relation (67) is shown as follows:

Syy =
1
T

∆Ŷ′∆Ŷ =
1
T

(
Ẑ∗−1ΠΠΠ

′
y∗ + Û

)′ (
Ẑ∗−1ΠΠΠ

′
y∗ + Û

)
=

1
T
αααyβββ

′
∗Ẑ

∗′
−1Ẑ

∗
−1βββ∗ααα

′
y +

1
T
αααyβββ

′
∗Ẑ

∗′
−1Û +

1
T

Û′Ẑ∗−1βββ∗ααα
′
y +

1
T

Û′Û →

→ αααyβββ
′
∗Σzzβββ∗ααα

′
y + Ωuu

where (61) implies that the mixed terms converge to 0, while the limit of ΠΠΠy∗Ẑ∗′−1Ẑ
∗
−1ΠΠΠ

′
y∗ is given as

in (65); and Ωuu is found from standard central limit theorems.
In order to prove (68), note first that (cf. Johansen (1991, p.1568))

Σyyααα⊥y = Ωuuααα⊥y +αααyβββ
′
∗Σzzβββ∗ααα

′
yααα

⊥
y︸ ︷︷ ︸

0

(70)

20Actually Phillips and Solo (1992, p.983) require for this result a slightly stronger assumption, namely a dominating

random variable Z such that E(Z4) < ∞ (compare footnote 18). However this requirement appears to be satisfied by

Assumption 5.
21Note that Ẑ∗′−1 has mean zero in Cases II-V (and in Case I if it is correctly specified), thus the first moment does

not impede the convergence to a covariance matrix.
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Now prove (68) by multiplying it from the right with the n×n matrix (αααy, Ωuuααα⊥y ) = (αααy, Σyyααα⊥y )(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy

(
αααy Σyyααα⊥y

)
=

(
ααα′yΩ

−1
uuαααy

)−1
ααα′yΩ

−1
uu

(
αααy Ωuuααα⊥y

)
(

Ir 0
)

=
(

Ir 0
)

Remember that (αααy, Ωuuααα⊥y ) has full rank by Assumption 5, Hypothesis Hr and the definition of ααα⊥,
which proves relation (68).
The equivalences in (69) are proven similarly to (cf. Johansen (1991, p.1568)) by multiplying the first
relation again with (αααy, Σyyααα⊥y ) from the right

Σ−1
yy − Σ−1

yy αααy
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy︸ ︷︷ ︸

Ξ1

(
αααy Σyyααα⊥y

)
= ααα⊥y

(
ααα⊥y

′
Σyyααα⊥y

)−1

ααα⊥y
′︸ ︷︷ ︸

Ξ2

(
αααy Σyyααα⊥y

)

which yields (
Ξ1αααy Ξ1Σyyααα⊥y

)
=

(
Ξ2αααy Ξ2Σyyααα⊥y

)
(

0 ααα⊥y

)
=

(
0 ααα⊥y

)
By examination of the components we obtain:

Ξ1αααy =Σ−1
yy αααy − Σ−1

yy αααy
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy αααy = 0

Ξ2αααy =ααα⊥y
(
ααα⊥y

′
Σyyααα⊥y

)−1

ααα⊥y
′
αααy = 0

Ξ1Σyyααα⊥y =Σ−1
yy Σyyααα⊥y − Σ−1

yy αααy
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy Σyyααα⊥y = ααα⊥y

Ξ2Σyyααα⊥y =ααα⊥y
(
ααα⊥y

′
Σyyααα⊥y

)−1

ααα⊥y
′
Σyyααα⊥y = ααα⊥y

which proves the first relation in (69). The relation ααα⊥y
(
ααα⊥y

′Σyyααα⊥y
)−1

ααα⊥y
′ = ααα⊥y

(
ααα⊥y

′Ωuuααα⊥y
)−1

ααα⊥y
′

is easily proven by invoking (70).

Finally, prove ααα⊥y
(
ααα⊥y

′Ωuuααα⊥y
)−1

ααα⊥y
′ = Ω−1

uu−Ω−1
uuαααy

(
ααα′yΩ

−1
uuαααy

)−1
ααα′yΩ

−1
uu once again by multiplying

with (αααy, Ωuuααα⊥y ) from the right.

We now have provided the foundations for Lemma 2, the equivalent of Lemma A.1 in Pesaran et al.
(2000, p.331) and of Lemma A.4 in Johansen (1991, p.1569):

Lemma 2 Define the (m−r+1)×1-dimensional G(a) as follows:

G(a) =
(
G1(a)
G2(a)

)
=
(
βββ′⊥CB̃m(a)
a− 1/2

)
(71)

where B̃m(a) = Bm(a)−
∫ 1

0
Bm(a)da. Moreover, let BT ≡

(
δδδ, T−1/2ξξξ

)
, and let Szz, Szy and Syy be

defined as in (40). Then
1
T

B′
TSzzBT ⇒

∫ 1

0

G(a)G(a)′da (72)

B′
T

(
Szy − SzzΠΠΠ′y∗

)
⇒
∫ 1

0

G(a)dB̃∗n(a)
′ (73)

where B̃∗n(a) = B̃n(a)−ΛΛΛB̃k(a).
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Proof of Lemma 2:
Let BT be defined as above. Then

1√
T

B′
T ẑ

∗
t ≈

1√
T

B′
T z̃

∗
t =

( 1√
T
δδδ′z̃∗t

1
T ξξξ

′z̃∗t

)
⇒
(
βββ′⊥CB̃m(a)
a− 1

2

)
= G(a) (74)

This follows straight from equation (58) and (60). (Note that both elements of G(a) are demeaned.)
By the continuous mapping theorem we obtain therefore

1
T

B′
TSzzBT =

1
T 2

B′
T Ẑ∗′−1Ẑ

∗
−1BT =

1
T

T∑
t=1

1√
T

(
B′
T ẑ

∗
t−1

) (
ẑ∗′t−1BT

) 1√
T

⇒
∫ 1

0

G(a)G(a)′da (75)

Equation (73) is proven by using (63):

B′
T

(
Szy − SzzΠΠΠ′y∗

)
= B′

T

1
T

Ẑ∗′−1

(
∆Ŷ − Ẑ∗−1ΠΠΠ

′
y∗

)
︸ ︷︷ ︸

Û

⇒ βββ′⊥C

∫ 1

0

B̃m(a)dB̃∗n(a)
′ (76)

where we apply again the continuous mapping theorem using (56): dB̃∗n(a) = (In, −ΛΛΛ) dB̃m(a)

Proofs of theorems 2 and 3

The lemmas provided on the previous pages may now serve to determine the asymptotic behaviour
of the test statistics (47) and (48)

LR (Hr|Hr+1) = −T ln
(
1− λ̂r+1

)
and LR (Hr|Hn) = −T

n∑
i=r+1

ln
(
1− λ̂i

)
In that respect, we are interested in the (n− r) smallest solutions to

|S(λ)| ≡
∣∣λSzz − SzyS

−1
yy Syz

∣∣ = 0 (77)

Proceed by defining the (m+1)-dimensional matrix AT ≡
(
βββ∗, BTT

−1/2
)

=
(
βββ∗, T

−1/2δδδ, T−1ξξξ
)

where rk(AT ) = m+1 by definition. The full rank property of AT implies that λ solves |S(λ)| = 0 if
and only if it solves |A′

TS(λ)AT | = 0. Now consider |A′
TS(λ)AT | more closely (cf. Johansen (1991,

p.1570)):

|A′
TS(λ)AT | =

∣∣∣∣∣
(

βββ′∗S(λ)βββ∗ 1√
T
βββ′∗S(λ)BT

1√
T
B′
TS(λ)βββ∗ 1

TB′
TS(λ)BT

)∣∣∣∣∣ ⇒
⇒

∣∣∣∣∣λ
(
βββ′∗Σzzβββ∗ 0

0
∫ 1

0
G(a)G(a)′da

)
−

(
βββ∗ΣzyΣ−1

yy Σyzβββ∗ 0
0 0

)∣∣∣∣∣ (78)

The off-diagonal terms of (78) converge to 0 due to the following fact: Note that T−1/2B′
TSzzβββ∗ ≈

T−1
∑
t T

−1/2B′
T z̃

∗
t−1z̃

∗′
t−1βββ∗. But βββ′∗z

∗
t = Op(1) from (59) and the convergence T−1/2B′

T z
∗
t ⇒

βββ′⊥CBm(a) from (74) only requires a factor of T−1/2, hence the factor T−3/2 incites T−1/2B′
TSzzβββ∗

to approach the limit 0 (compare Johansen (1995, p.146-148)).
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Similarly, B′
TSzyS

−1
yy Syzβββ∗ converges to a constant, therefore pre-multiplication with T−1/2 leads

to a zero limit. Noting that T−1/2B′
TSzzβββ∗ → 0, we find from close inspection of equation (73)

in Lemma 2 that T−1/2B′
TSzy → 0 22; and since S−1

yy converges to a constant, this implies that
T−1B′

TSzyS
−1
yy SyzBT → 0. Hence we infer that the limit of T−1B′

TS(λ)BT is the same as that of
T−1B′

TS(zz)BT .
Thus equation (78) shows that in the limit (m+1−r) roots of |S(λ)| = 0 must be zero, while only r
remain positive:23 viz. for λi such that i > r we have λi → 0 as T → 0. Now let λ in (78) converge
such that Tλ = ρ remains fixed as λ→ 0, T →∞ (cf. Johansen (1991, p.1570)).
Next, note that, quite as before, λ solves |S(λ)| = 0 if and only if it solves | (βββ∗, BT )′ S(λ) (βββ∗, BT ) | =
0, where

∣∣(βββ∗, BT )′ S(λ) (βββ∗, BT )
∣∣ = ∣∣∣∣∣

(
βββ′∗S(λ)βββ∗ βββ′∗S(λ)BT

B′
TS(λ)βββ∗ B′

TS(λ)BT

)∣∣∣∣∣ =
= |βββ′∗S(λ)βββ∗|

∣∣∣B′
TS(λ)BT −B′

TS(λ)βββ∗ (βββ′∗S(λ)βββ∗)
−1
βββ′∗S(λ)BT

∣∣∣ (79)

since

∣∣∣∣∣
(

A B

C D

)∣∣∣∣∣ = |A||D − CA−1B|. Note that the former term |βββ′∗S(λ)βββ∗| has dimension r × r

while the latter term has dimension (m+1−r)× (m+1−r). Now consider |βββ′∗S(λ)βββ∗|:

|βββ′∗S(λ)βββ∗| =
∣∣∣ ρ
T
βββ′∗Szzβββ∗ − βββ′∗SzyS−1

yy Syzβββ∗

∣∣∣ → ∣∣−βββ′∗ΣzyΣ−1
yy Σyzβββ∗

∣∣
hence |βββ′∗S(λ)βββ∗| converges to a constant as T → ∞; consequently it has no roots ρ that solve
|βββ′∗S(λ)βββ∗| = 0. Next, examine

B′
TS(λ)βββ∗ =

ρ

T
B′
TSzzβββ∗ −B′

TSzyS
−1
yy Syzβββ∗ = −B′

TSzyS
−1
yy Syzβββ∗ +Op(1)

Therefore we obtain for the latter term of (79):∣∣∣B′
TS(λ)BT −B′

TS(λ)βββ∗ (βββ′∗S(λ)βββ∗)
−1
βββ′∗S(λ)BT

∣∣∣ = (80)∣∣∣ ρ
T

B′
TSzzBT −B′

TSzyS
−1
yy SyzBT −

(
−B′

TSzyS
−1
yy Syzβββ∗ +Op(1)

)
×

×
( ρ
T
βββ′∗Szzβββ∗ − βββ′∗SzyS−1

yy Syzβββ∗

)−1 (
−B′

TSzyS
−1
yy Syzβββ∗ +Op(1)

)′ ∣∣∣ =
=
∣∣∣ ρ
T

B′
TSzzBT −B′

TSzy

(
S−1
yy − S−1

yy Syzβββ∗
(
βββ′∗SzyS

−1
yy Syzβββ∗

)−1
βββ′∗SzyS

−1
yy

)
︸ ︷︷ ︸

≡N

SyzBT +Op(1)
∣∣∣

Consider the limit of N :

N → Σ−1
yy − Σ−1

yy Σyzβββ∗
(
βββ′∗ΣzyΣ

−1
yy Σyzβββ∗

)−1
βββ′∗ΣzyΣ

−1
yy = (81)

= Σ−1
yy − Σ−1

yy αααyβββ
′
∗Σzzβββ∗

(
βββ′∗ΣzyΣ

−1
yy Σyzβββ∗

)−1
βββ′∗Σzzβββ∗ααα

′
yΣ

−1
yy = (82)

= Σ−1
yy − Σ−1

yy αααy
(
ααα′yΣ

−1
yy αααy

)−1
ααα′yΣ

−1
yy = (83)

= ααα⊥y
(
ααα⊥′y Ωuuααα⊥y

)−1
ααα⊥′y (84)

22As B′
T Szzβββ∗ vanishes asymptotically, the expression in (73) becomes dominated by B′

T Szy which converges toR
G(a)dB̃∗′

n (a). But then the latter term of T−1B′
T S(λ)BT , namely T−1/2B′

T SzyS−1
yy SyzBT T−1/2 converges to 0.

23The r largest roots remain positive since S(λ) is positive semi-definite and symmetric.
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where (82) follows from (66), relation (83) is a consequence of applying the matrix inversion to the
expression in brackets, and (84) follows from (69).
This implies that the limit of equation (80) is equivalent to that of:∣∣∣∣ρ 1

T
B′
TSzzBT −B′

TSzyααα
⊥
y

(
ααα⊥′y Ωuuααα⊥y

)−1
ααα⊥′y SyzBT +Op(1)

∣∣∣∣⇒
⇒
∣∣∣∣ρ∫ 1

0

G(a)G(a)′da−
∫ 1

0

G(a)dB∗′n (a)ααα⊥y
(
ααα⊥′y Ωuuααα⊥y

)−1
ααα⊥′y

∫ 1

0

dB∗n(a)G(a)′
∣∣∣∣ (85)

Note that in the latter term the expression B′
TSzyααα

⊥
y = B′

T

(
Szy − SzzΠΠΠ′y∗

)
ααα⊥y , hence the limit of

this term follows from Lemma 2; as does the limit of the term 1
TB′

TSzzBT . This demonstrates that
for the (m+1−r) smallest solutions λ̂i of |S(λ)| = 0, the term T λ̂i converges to the corresponding
root ρi of equation (85).
In order to convert (85) into an expression consisting of independent Brownian motions, consider that
the (m − r)-dimensional transformation ααα′⊥Bm(a) has covariance matrix E(ααα′⊥Bm(a)Bm(a)′ααα⊥) =
ααα′⊥Ωeeααα⊥ where Ωee was defined in equation (55).
Hence we may construct a Brownian motion Wm−r(a) = (ααα′⊥Ωeeααα⊥)−1/2

ααα′⊥Bm(a). (Correspondingly
we obtain for the corresponding demeaned Brownian motion (ααα′⊥Ωeeααα⊥)1/2 W̃m−r(a) = ααα′⊥B̃m(a).)
Next recall the composition of G(a) from Lemma 2 and that of C from Theorem 1:

G(a) =
(
βββ′⊥CB̃m(a)
a− 1

2

)
=
(
βββ′⊥βββ⊥(ααα′⊥ΓΓΓβββ⊥)−1ααα′⊥B̃m(a)

a− 1
2

)
=

=
(
βββ′⊥βββ⊥(ααα′⊥ΓΓΓβββ⊥)−1 (ααα′⊥Ωeeααα⊥)1/2 W̃m−r(a)

a− 1
2

)
=(

L11 0
0 1

)
F (a) = LF (a) where F (a) ≡

(
W̃m−r

a− 1
2

)
(86)

and the left upper entry of the (m − r + 1) × (m − r + 1) matrix L is given as L11 =
βββ′⊥βββ⊥(ααα′⊥ΓΓΓβββ⊥)−1 (ααα′⊥Ωeeααα⊥)1/2.
Moreover recall from (56) that B∗m(a)′ = (B∗n(a)

′, Bk(a)′) and that for the m−r-dimensional trans-
formation ααα′⊥B

∗
m(a) we have

E(ααα′⊥B
∗
m(a)B∗m(a)′ααα⊥) = ααα′⊥

(
Ωuu 0
0 Ωxx

)
ααα⊥ =

(
ααα⊥′y Ωuuααα⊥y 0

0 ααα⊥′x Ωxxααα⊥x

)

This block-diagonality allows for constructing an m-dimensional independent Brownian motion as(
Wn−r(a)
Wk(a)

)
=
(

(ααα⊥′y Ωuuααα⊥y )−1/2ααα⊥′y B
∗
n(a)

(ααα⊥′x Ωxxααα⊥x )−1/2ααα⊥′x Bk(a)

)
(87)

Proceed likewise for the deterministics-adjusted versions B̃∗m(a) and B̂∗m(a). Thus using (87) and
(86), we may rewrite (85) as∣∣∣L(ρ∫ 1

0

F (a)F (a)′da︸ ︷︷ ︸
Θ1

−
∫ 1

0

F (a)dW̃n−r(a)′︸ ︷︷ ︸
Θ2

∫ 1

0

dW̃n−r(a)F (a)′︸ ︷︷ ︸
Θ′

2

)
L′
∣∣∣ = 0 (88)
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Assumptions 3 and 5, and the definitions of ααα⊥ and βββ⊥ ensure that L has full rank.24 Hence ρ solves
(88) if and only if it solves |ρΘ1 − Θ2Θ′

2| = 0. Now multiply with Θ′
2Θ

−1
1 from the left, and with

Θ2(Θ′
2Θ2)−1 from the right to obtain∣∣∣ρIn−r − ∫ 1

0

dW̃n−r(a)F (a)′
(∫ 1

0

F (a)F (a)′da
)−1 ∫ 1

0

F (a)dW̃n−r(a)′
∣∣∣ = 0 (89)

Therefore, T times the (n − r) smallest roots of |S(λ)| = 0 converge to the eigenvalues of Θ′
2Θ

−1
1 Θ2

Finally, reconsider the test statistics:

LR (Hr|Hn) = −T
n∑

i=r+1

ln
(
1− λ̂i

)
= −T

n∑
i=r+1

λ̂i +Op(1) ⇒

⇒
n∑

i=r+1

ρ̂i = tr

(∫ 1

0

dW̃n−r(a)F (a)′
(∫ 1

0

F (a)F (a)′da
)−1 ∫ 1

0

F (a)dW̃n−r(a)′
)

(90)

while

LR (Hr|Hr+1) = −T ln
(
1− λ̂r+1

)
= −T λ̂r+1 +Op(1) ⇒ ρ̂r+1 (91)

and ρ̂r+1 equals the largest eigenvalue of∫ 1

0

dW̃n−r(a)F (a)′
(∫ 1

0

F (a)F (a)′da
)−1 ∫ 1

0

F (a)dW̃n−r(a)′ (92)

This completes the proofs of Theorems 2 and 3 for the Case IV. The corresponding proofs for the
other cases differ only slightly from this proof.

6 Asymptotic tests on coefficient restrictions

In addition to Theorems 2 and 3, Pesaran et al. (2000) provide several test statistics on whether the
restrictions on c0 and c1 from Cases I-V are correctly specified (compare Johansen (1995, pp.161-
162)). Moreover, the authors elaborate on methods and tests regarding restrictions on the short run
dynamics of a VECM as in (20). For our purpose however, we regard the test statistics concerned
with the weak exogeneity restriction in Assumption 4 to be the most important contributions of this
article: Similar to Pesaran et al. (2000, pp.309-311), we will concentrate henceforth on case IV, where
the other cases follow completely analogously.
Assumption 4 implies that {xt} is integrated of order one and long-run forcing for {yt}. These
statements imply that {xt} is not cointegrated on its own; and that the differenced process {∆xt}
does not depend on the lagged cointegration equation βββ∗z∗t−1. In order to investigate the former issue,
augment the sub-system model from (22) by keeping part of the ΠΠΠx matrix:

∆xt = ax0 +
p−1∑
i=1

ΓΓΓxi∆zt−i + ΠΠΠxx∗x
∗
t−1 + ext (93)

where we define:

γγγ =
(
γγγy
γγγx

)
ΠΠΠx =

(
ΠΠΠxy ΠΠΠxx

)
ΠΠΠxx∗ = ΠΠΠxx

(
γγγx Ik

)
x∗t−1 =

(
t

xt−1

)
24Moreover the matrix Θ1 is non-singular a.s. and Θ2 has full row rank a.s.
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Note that while we now allow ΠΠΠxx 6= 0, we still require ΠΠΠxy = 0, hence the process {xt} may be
cointegrated but still long-run forcing for {yt}. Now introduce the following hypothesis about ΠΠΠxx:

Hypothesis Hx
r : rk(ΠΠΠxx) = r r = 0, 1, . . . , k

Similar to section 3, we may stack and concentrate out the parameters ax0 and ΓΓΓi:

∆X̂ = ∆X− ιιιâ′x0 −
p−1∑
i=1

∆X−iΓ̂ΓΓ
′
xi

X̂∗
−1βββ

∗
xααα

′
xx =

(
X∗
−1 − ιιιâ′x0 −

p−1∑
i=1

∆X−iΓ̂ΓΓ
′
xi

)
ΠΠΠ′xx∗

Next, denote S11 = T−1X̂∗′
−1X̂

∗
−1, S01 = T−1∆X̂′X̂∗

−1 and S00 = T−1∆X̂′∆X̂ and further concen-
trate out αααxx to obtain

1
T

Ê′xÊx = S00 − S01βββxx∗ (βββ′xx∗S11βββxx∗)
−1
βββ′xx∗S10

The likelihood `(βββxx∗|r) is derived from the distribution function of {et}, and after concentrating out,
collapses to a constant plus |T−1Ê′xÊx|, just as in (43). Similar to the further development in section
3, the maximised likelihood is given by the solutions λ to

|S11λ− S10S
−1
00 S01| = 0 (94)

Thus the likelihood ratio statistic for testing Hx
0 against Hx

1 is therefore

Test 3 Hx
0 vs. Hx

1

The log-likelihood ratio statistic for testing Hx
0 : ΠΠΠxx = 0 against Hx

1 : rk(ΠΠΠxx) = 1 is given by

LR (Hx
0 |Hx

1 ) = −T ln
(
1− λ̂1

)
(95)

where λ̂1 is the maximum solution to equation (94).

The test statistic for the alternative Hx
k is similar:

Test 4 Hx
0 vs. Hx

k

The log-likelihood ratio statistic for testing Hx
0 : ΠΠΠxx = 0 against Hx

k : rk(ΠΠΠxx) = k is given by

LR (Hx
0 |Hx

k ) = −T
k∑
r=1

ln
(
1− λ̂r

)
(96)

where λ̂r, r = 0, 1, . . . , k are the solutions to equation (94).

Apart from the difference in filtering on ∆zt−i, the test statistics are thus the same as the well-known
Johansen (1991) test statistic, respectively the Pesaran et al. (2000) test statistic (cf. Tests 1 and 2)
for the degenerate case k = 0. Unsurprisingly, the corresponding statistics converge to expressions as
in Theorems 4 and 5 (Pesaran et al., 2000, Theorems 4.7 and 4.8, p.310):
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Theorem 4 Limit distribution of Test 3
Under Hr as well as Assumptions 2, 3, 4 and 5, the limit distribution of Test 3 is the distribution of
the maximum eigenvalue of∫ 1

0

dWk(a)Fk(a)
′
(∫ 1

0

Fk(a)Fk(a)′da
)−1 ∫ 1

0

Fk(a)dWk(a)′ (97)

where

Fk(a) =



Wk(a) Case I
(Wk(a)′, 1)′ Case II
W̃k(a) Case III
(W̃k(a)′, a− 1/2)′ Case IV
Ŵk(a) Case V


a ∈ [0, 1] (98)

Theorem 5 Limit distribution of Test 4
Under Hr as well as Assumptions 2, 3, 4 and 5, the limit distribution of Test 3 is given by the
distribution of

tr

(∫ 1

0

dWk(a)Fk(a)
′
(∫ 1

0

Fk(a)Fk(a)′da
)−1 ∫ 1

0

Fk(a)dWk(a)′
)

(99)

where Fk(a) is defined as in (98).

The proofs of Theorems 4 and 5 are just a degenerate case of the proofs of Theorems 2 and 3.
Next, consider a specification test for the second statement (that the lagged cointegration relationship
does not affect {∆xt}) with respect to the sub-system model

∆xt = ax0 +
p−1∑
i=1

ΓΓΓxi∆zt−i +αααxyβ̂ββ
′
∗x
∗
t−1 + ext (100)

where β̂ββ∗ denotes the estimator of the cointegrating vector under Hr in Case IV from (46). The
likelihood ratio statistic for αααxy = 0 is given by f(Ê|α̂ααxy) − f(Ê|αααxy = 0). Concentrating out ∆X̂
as above and Ẑ∗−1,xβ̂ββ∗

25 as in

Ẑ∗−1,xβ̂ββ∗ =

(
Z∗−1 − ιιιâ′x0 −

p−1∑
i=1

∆X−iΓ̂ΓΓ
′
xi

)
β̂ββ∗

yields

α̂ααxy = ∆X̂ ′Ẑ∗−1,xβ̂ββ∗

(
β̂ββ
′
∗Ẑ

∗′
−1,xẐ

∗
−1,xβ̂ββ∗

)−1

and by straightforward likelihood ratio construction we arrive at Test 5:

Test 5 αααxy = 0 vs. αααxy 6= 0
Under Hr, the log-likelihood ratio statistic for testing H0 : αααxy = 0 against HA : αααxy 6= 0 is given by

LR (αααxy) = T
(
log
∣∣∣T−1(∆X̂− Ẑ∗−1,xβ̂ββ∗α̂αα

′
xy)

′((∆X̂− Ẑ∗−1,xβ̂ββ∗α̂αα
′
xy))

∣∣∣− log
∣∣∣T−1∆X̂′∆X̂

∣∣∣) (101)

where Ẑ∗−1,x and ∆X̂ are residuals according to cases as on page 23, and β̂ββ∗ stems from (46).

25Note that Ẑ∗−1,x differs from Ẑ∗−1 given in (38) as it is not adjusted for ΛΛΛ∆X.

25



Pesaran et al. (2000, Theorem 4.9, p.335) infer that the limit distribution of test statistic 5 is given
by a χ2-distribution:

Theorem 6 Limit distribution of Test 5
Under Hr and Assumptions 2, 3, 4 & 5, the limit distribution of Test 5 has a limiting χ2-distribution
with kr degrees of freedom for Cases I-V, r = 1, . . . , n.

The proof of 6 is omitted here (as it is done in Pesaran et al. (2000, p.335) for its major part). The
result follows straightforward from Pesaran et al. (2000, Lemma A.3, p.335) where the authors prove
that β̂ββ∗ − βββ∗ = Op(1), even in the case where Assumption 4 does not hold. Hence in the limit, the
resulting term βββ′∗ẑ

∗
t−1,x is stationary. Since the remaining terms in (101) are stationary as well, the

result follows as for the standard likelihood ratio case.

7 Concluding Remarks

We have introduced Test statistics 1 and 2, originally contributed by Pesaran et al. (2000), and
have provided a consolidated derivation of these statistics as well as their limiting distributions (cf.
Theorems 2 and 3). In particular we hope to have presented the corresponding proofs in a manner
accessible to readers who are not familiar with the ubiquitous Johansen (1991) cointegration test
- and thus provide a future reference for users of the cointegration tests by Pesaran et al. (2000).
The mentioned test statistics serve to extend the analysis of cointegrated systems to the inclusion
of exogenous I(1) variables which are assumed to be long-run forcing for the ”endogenous” variables.
Moreover, we have introduced the diagnostic tests 3, 4 and 5, which help to investigate whether the
restrictions on the exogenous terms are correctly specified.
These types of tests may be a useful tool for empirical studies on small open economies, peripheral
financial markets and in regional economics. In order to enable empirical analysis, we implemented
the test statistics mentioned above in Matlab.26

Further promising directions on the applied side would include implementing the additional tests and
methods suggested by Pesaran et al. (2000): Firstly, diagnostic tests on case specification (Pesaran
et al., 2000, p.308-310) and, secondly, the possibility for imposing restrictions on short-run parameters
ΨΨΨ (Ibid., pp.311-313) of the VECM in (20). Moreover, implementing polynomial approximations for
the critical values in Pesaran et al. (2000) as developed by MacKinnon et al. (1999), would provide a
useful extension.

26The corresponding Matlab routine may be obtained from the author.
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Appendix A.1: Notes on implementation in MATLAB

The central requirement for this first year paper was to implement the crucial parts of Pesaran
et al. (2000) in Matlab. While Matlab is a versatile application for solving a wide range of
mathematical problems, it does not offer an environment tailored to the manipulation of symmetric,
positive semi-definitive matrices. Moreover Matlab is a procedural language that does not try
to ”outguess’ the programmer’s procedure. This fosters Matlab’s usability, but puts a drag on
computational efficiency, since many of Matlab’s algorithms try to solve more general problems
than the issues in this paper. Therefore our implementation of the Pesaran et al. (2000) test focuses
on data manipulation in a way that optimises execution speed.
In particular, this implies avoiding matrix inversion wherever feasible (which may be accomplished by
proper factorisation), and minimising the need for (k×T ) times (T ×k) - style matrix multiplication.
Crucially, for-next loops should be kept to an absolute minimum, since the the execution of iterative
statements is considerably faster at the binary level.
The routine uPSS is split in four main parts: It starts with (a) user input checks and ends with
(d) code concerned with displaying the test results properly. Moreover, there is a subroutine (c)
that returns critical values as provided in Pesaran et al. (2000, pp.337-341). These three parts are
lengthy but straightforward and will not be discussed here. The central part (b) is to be found in the
subroutine fnc_psscompute, which comprises the preliminary regressions as on page 10, passes the
generalised eigenvalue problem to the subroutine fnc_geneig and performs the computations for the
statistics outlined in Tests 3, 4 and 5. The projection matrix for the residuals Ŷ and Ẑ∗−1 are obtained
as follows: Factorise the matrix ∆Z− (augmented for deterministic terms according to cases a as on
page 12) by singular value decomposition; This decomposition allows to express any T×k matrix X of
rank k as USV′ (where S corresponds to the first k columns of the square roots of XX′’s eigenvalues,
U are the eigenvectors of XX′ and V the eigenvectors of X′X). Denoting S′S = ΛΛΛ, we obtain
US = U1:kΛΛΛ1/2, where U1:k denotes the first k columns of X. Hence the projector X(X′X)−1X′

may be expressed as follows:

X(X′X)−1X′ = USV′(VS′SV′)−1VS′U′ = U1:kU′
1:k

In this manner we construct the projectors for the preliminary regressions yielding ∆Ŷ and Ẑ∗−1, as
well as ∆X̂, X̂∗

−1 and Ẑ∗−1,x.
Out of this ”filtered” data, we construct the matrices Syy, Syz and Szz. Then, we obtain the corre-
sponding eigenvalues of the function S(λ) from (77) by using Cholesky factorisation to convert the
generalised eigenvalue problem into one of symmetric matrices: The motivation is that Matlab’s
eigenvalue routine detects symmetric matrices and consequently uses an abridged version for solving
the problem. For that purpose, apply the Cholesky decomposition to(

Syy Syz

Szy Szz

)
=

(
L11 0
L21 L22

)(
L′11 L′21
0 L′22

)

Then we may express SzyS−1
yy Syz = L21L′21. Note that the solutions to S(λ) are equivalent to the

eigenvectors and eigenvalues of S−1
zz SzyS

−1
yy Syz = S−1

zz L21L′21. Now apply the Cholesky factorization
once again to: Szz = LzL′z which implies S−1

zz = L−1′
z L−1

z . Thus we are interested in the solutions to
|λI− L−1′

z L−1
z L21L′21| = 0, with corresponding eigenvectors v satisfying L−1′

z L−1
z L21L′21v = λv. By
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multiplying from the left with L′z, and with L−1′
z from the right, we obtain that the solutions λ̂ are

the the same as those to |Iλ−L−1
z L21L′21L

−1′
z | = 0. The corresponding eigenvectors w consequently

satisfy L−1
z L21L′21L

−1′
z w = λw. Comparison illustrates that v = L−1

z w. (Note that this implies
v′Szzv = I.) The Matlab subroutine fnc_geneig solves the generalised eigenvalue problem exactly
in the manner described above.27

Under the cointegrating rank hypothesis Hr the vector βββ∗ is then given by the first r eigenvectors
v. Accordingly, the adjustment coefficients αααy are then obtained by plain OLS estimation α̂ααy =
Syzβ̂ββ∗(β̂ββ

′
∗Szzβ̂ββ∗)

−1 = Syzβββ∗.
Finally, note that βββ and ααα are identified only up to an r × r non-singular matrix K, i.e. αααyβββ

′ =
(αααyK−1)(Kβββ′) for any non-singular matrix K : Using the normalisation β̂ββ

′
∗Szzβ̂ββ∗ = I in that respect

may hinder interpretation. Rather we prefer to present β̂ββ∗ in its reduced row echelon form, which is
equivalent to choosing K = βββ−1

∗r×r where βββ∗r×r denotes the r×r upper left sub-matrix of βββ∗. The
routine uPSS provides this normalisation as an additional option.
For further information on implementation, please refer to the comments in the code of uPSS.

27Note however that by the way we defined Syy , Syz and Szz , the m×m matrix S−1
zz SzyS−1

yy Syz has k zero roots.

This causes problems, as the numerical solution by Matlab may set these eigenvalues to complex numbers close to

zero. This fact requires special treatment in the subroutine.
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Appendix A.2: User manual for the MATLAB routine uPSS

Overview

The Matlab routine uPSS implements the cointegrating rank tests by Pesaran et al. (2000) for a
system of n endogenous variables Y, with k exogenous variables X appearing in the cointegrating
relationship. The exogenous variables are assumed to be I(1), not mutually cointegrated and inde-
pendent of the lagged cointegration relationship with Y. However, the dynamics of Y may affect X
in the short run.
The routine provides three central statistics

• Cointegrating rank tests: Similar to Johansen (1991) the function returns the test statistics
for the hypothesis of cointegrating rank r of ΠΠΠ in equation (21), r = 0, 1, . . . , n: The trace test
statistic (cf. Test 2, p.13) is the likelihood ratio test of the null Hr (cointegrating rank r) against
Hn, while the maximum eigenvalue statistic (cf. Test 1, p.13) is the likelihood ratio test of the
null Hr against Hr+1. The procedure provides the corresponding critical values for the 5% and
10% significance levels and determines the cointegrating rank. (Optionally, the latter feature
may be turned off)

• Cointegrating vectors: Moreover, uPSS determines the cointegrating vectors βββ and adjust-
ment coefficients ααα for each hypothesised rank r. The user may choose between two normal-
isations of ααα and βββ: Either such that βββ is in reduced row echelon form under Hr (this is the
default case); or the form where βββ conforms to the generalized eigenvector normalisation (cf.
Appendix A.1).

• Exogeneity Diagnostics: Finally, uPSS applies a separate cointegration rank test on X (cf.
model (22)) to test whether the exogenous series are I(1) and not mutually cointegrated, when
adjusting for the short-run impact of Y (cf. Tests 3 and 4, p.24). Moreover it performs a test
on whether the adjustment coefficients for X with respect to the cointegrating relationship in
βββ are different from zero (cf. Test 5, p.25). All of these tests are delivered with corresponding
critical values. Optionally, these diagnostics test for X may be deactivated.

Inputs

Apart from providing the data matrices Y, and (optionally) X, the routine requires to specify a lag
order p as in models (21) and (22). This parameter p is the lag order in levels, hence the VECM
model in (21) estimates p− 1 autoregressive lagged difference terms in addition to the cointegrating
and deterministic parameters.
Moreover, the routine requires to specify one out of five assumptions on the deterministic terms in
the cointegrating equation as well as the VAR in the differences28 (cf. p.7):

• Case I: Neither intercepts nor trends in cointegration equation(s) and VAR

• Case II: intercept in cointegration equation(s), no deterministic terms in VAR

• Case III: intercept in cointegration equation(s) and VAR, no trends
28Note that cases III and V slightly differ from the cases by Johansen (1991) provided in most software packages.
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• Case IV: intercept and trend in cointegration(s) equation, intercept in VAR

• Case V: intercept and trend in cointegration(s) equation as well as VAR

In total, there are nine input parameters for uPSS, three of which have to be specified in any case:

Table 1: Input parameters for uPSS
Parameter Type Description

vYseries (required) T × n matrix Alternatively a structure Y with Y.data the data matrix, and

or structure Y.name a cell string vector containing the series names.

vXseries (required) T × k matrix type any scalar or string to omit vXseries.

or structure

lLagOrder (required) Positive integer Specifies the lag order in the levels.

lCase (optional) Positive integer 1:5 Integer corresponding to case numbers I-V (cf. p.7); if none

default: 5 is provided or lCase=nan, Case V is selected

lSigniLevel (optional) Integer 0:2 Significance level, type 1 for 5% critical values (resp. type 95, 5);

default: 1 2 for 10% significance level (resp. type 90, 10). Type 0 if uPSS

should refrain from retrieving critical values (does not affect

critical values for Exogeneity Diagnostics)

bBetaAlpha(optional) Boolean Type 0 resp. false if no βββ and ααα should be computed

default: true

bExoDiagnostics (optional) Boolean If bExoDiagnostics=0, then uPSS refrains from computing

default: true diagnostic tests on X. Not including vXseries triggers

bExoDiagnostics=false. (cf. section 6)

bDisplay (optional) Boolean bDisplay=true incites uPSS to provide a clearly arranged

default: true presentation of results. bDisplay=false raises speed considerably.

bREF_beta_alpha (optional) Boolean bREF_beta_alpha=true induces a reduced row echelon form

default: true representation of βββ, with ααα adjusted accordingly (cf. Appendix A.1).

bREF_beta_alpha=false leads to a normalisation βββ′Szzβββ = I

Hints

• The computational parts of uPSS have been optimised for maximum speed. However, the final
presentation of results has been trimmed to aesthetics rather than speed. If one’s aim is speed
(as maybe in a sequence of tests), one might consider to turn the visual display off (i.e. set
bDisplay to false).

• For more information on output parameters, type help uPSS.

• Note that if you do not provide the exogenous data matrix X, the routine uPSS returns nothing
else but the Johansen (1991) test.

• If you have not worked with Matlab before, note that the file uPSS.m should be saved in
your current working directory. You may experiment with the function as follows: Save
the additional files indprod_sa.xls, uXl2ml.m and structs2m.m into your working direc-
tory, and the execute the following commands: First uXl2ml(’indprod_sa.xls’);, then
uPSS(structs2m(BE,NL),DE,2,5);. With the sample data on industrial production in
indprod_sa.xls, this will perform a test on whether Belgium and the Netherlands are cointe-
grated with Germany as an exogenous series, under lag order p = 2, and Case V.
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