
Solutions for Econometrics I Homework No.1

due 2006-02-20

Feldkircher, Forstner, Ghoddusi, Grafenhofer, Pichler, Reiss, Yan, Zeugner

Exercise 1.1

Structural form of the problem:

1. qd
t = α0 + α1pt + α2yt + ut1

2. qs
t = β0 + β1pt−1 + ut2

To get the reduced form solve your system of equations for the endogenous

variables:

3. qs
t = qd

t = β0 + β1pt−1 + ut

4. pt = 1
α1

[(β0 − α0)− α2yt + β1pt−1(ut2 − ut1)]

To arrive at the final form, each equation may only contain own lags or exogenous

variables on the right-hand side. So (4) is already in the final form and for (3):

Rewrite (1) to get

pt =
1

α1

[qd
t − α0 − α2yt − ut1]

If we lag this we get

pt−1 =
1

α1

[qd
t−1 − α0 − α2yt−1 − ut1−1]

Plug this into (3) to get

qs
t = qd

t = β0 + ut + β1[
1

α1

(qd
t−1 − α0 − α2yt−1 − ut1−1)]
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Exercise 1.2

The variance covariance matrix (VCV) of X ∈ Rk is defined as V ar(X) = E[(X −

EX)(X − EX)′].The covariance matrix is given by Cov(X,Y ) = E[(X − EX)(Y −

EY )′].Show the following transformation rules, where A, B, a, b are non-random ma-

trices or vectors of suitabel dimensions (A ∈ Rs×k, B ∈ Rt×m and a ∈ Rs, b ∈ Rt)

1. E(AX + a) = AE(X) + a

2. Cov(X,Y ) = E(XY ′)− (EX)(EY )′

3. Cov(AX + a, BY + b) = A[Cov(X,Y )]B′

4. V ar(AX + a) = A[V ar(X)]A′

Proof:

1.

E(AX + a) = AE(X) + a (1)

Martin Wagners Comment on that: ”follows from properties of the integral”

Dominikis comment: ”multiply out the equation and look at the i-th row”

2.

Cov(X, Y ) = E[(X − EX)(Y − EY )′]

= E[XY ′ −X(EY )′ − EXY ′ + EX(EY )′]

= E(XY ′)− E[X(EY )′]− E[E(X)Y ′] + E[EX(EY )′]

= E(XY ′)− EX(EY )′
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3.

V ar(AX + a) = V ar(AX) + V ar(a)1

= V ar(AX) + 0

= E[(AX − AEX)(AX − AEX)′]

= E[AXX ′A′ − AX(EX)′A′ − AEXX ′A′ + AEX(EX ′)A′]

= AE[XX ′ −X(EX)′ − E(X)X ′ + EX(EX ′)]A′

= A[V ar(x)]A′

4.

Cov(X, Y ) = E(XY ′)− (EX)(EY )′

= E[(AX + a− E(AX + a))(BY + b− E(BY + b))′]

= E[(AX + a− AEX − a︸ ︷︷ ︸
follows from 1

)(BY + b−BE(Y )− b)′]

= E[(AX − AE(X))(BY −BE(Y ))′]

= AE[(X − E(X))(Y − E(Y ))]B′

5. follows from 3

Exercise 1.3

Let X ∈ RT×k, Y ∈ RT×m,1 = (1, . . . , 1) ∈ RT . Define

1. X = 1
T
1′X and Y = 1

T
1′Y

2. V̂ ar(X) = 1
T
[(X − 1X)′(X − 1X)]

3. Ĉov(X,Y ) = 1
T
[(X − 1X)′(Y − 1Y )]

For A ∈ Rk×s, B ∈ Rm×t, a ∈ R1×s, b ∈ R1×t derive the following transformation

rules:
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1. XA + 1a = XA + a

Proof:

XA + 1a =
1

T
[1′(XA + 1a)]

1

T
[1′XA + 1′1︸︷︷︸

equals T

a)] = XA + T
1

T
a

= XA + a

2. Ĉov(X,Y ) = 1
T
X ′Y −X

′
Y

Proof:

Ĉov(X, Y ) =
1

T
[(X − 1X)′(Y − 1Y )]

=
1

T
[X ′Y −X ′1Y −X

′
1′Y + X

′
1′1Y ]

=
1

T
X ′Y − 1

T
X ′1︸ ︷︷ ︸
X

′

Y −X
′ 1

T
1′Y︸ ︷︷ ︸
Y

+
1

T
TX

′
Y

=
1

T
X ′Y − 2X

′
Y + X

′
Y

=
1

T
X ′Y −X

′
Y

3. Ĉov(XA + 1a, Y B + 1b) = A′Ĉov(X, Y )B

Proof:

Ĉov(XA + 1a, Y B + 1b) =
1

T
[(XA + 1a− (1XA + 1a))′(Y B + 1b− (1Y B + 1b))]

=
1

T
[(XA− 1XA)′(Y B − 1Y B)]

= A′ 1

T
[(X − (1X)′(Y − 1Y )]B

= A′Ĉov(X, Y )B

4. V̂ ar(XA + 1a) = A′V̂ ar(X)A

Proof:

V̂ ar(XA + 1a) =
1

T
[XA + 1a− 1(XA + 1a)]′[XA + 1a− 1(overlineXA + 1a)]

=
1

T
[XA + 1a− 1(X
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Exercise 1.4

We start with a singular value decomposition (SVD) of X ∈ RT×k, ie. we have

U ∈ RT×T V ∈ Rk×k, both orthogonal matrices, and Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where σi =
√

λi with λi’s being the Eigenvalues of X ′X such that

X = UΣV ′ .

We have to show X ′Xβ = X ′y. We plug in the SVD of X and get

X ′Xβ = X ′y

V Σ′ΣV ′β = V Σ′U ′y |V ′·

Σ′Σ(V ′β) = Σ′U ′y

λ1(V
′β)1

. . .

λr(V
′β)r

0

. . .

0


=



σ1(U
′y)1

. . .

σr(U
′y)r

0

. . .

0


Define Σ+ := diag(1/σ1, . . . , 1/σr, 0, . . . , 0). By this we know that β := V Σ+U ′y solves

the normal equations.

(Note: Σ+Σ+Σ = Σ+)

Exercise 1.5

Show that X(X ′X)−1X ′ is the orthogonal projector on the column space spanned by

X and show that I − X(X ′X)−1X ′ is the projector on the ortho-complement of the

column space spanned by X.

Assumption: (X ′X)−1 is invertible. Define P1 := X(X ′X)−1X ′ and P2 =

X(X ′X)−1 (X ′X)(X ′X)−1︸ ︷︷ ︸
I

X ′ = P1.
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Proof:

< a, Pb >= a′X(X ′X)−1X ′b = X[(X ′X)−1]′X ′a =< Pa, b > (2)

So P is symmetric.

Secondly, we show that P projects on the space Xb by showing that the remainder

term a− Pa is orthogonal to the space Xb.

< a− Pa, Xb >= (a− Pa)′Xb (3)

= a′Xb− a′X (X ′X)−1X ′X︸ ︷︷ ︸
I

b (4)

= a′Xb− a′Xb = 0 (5)

(I − P )a = a− Pa (I − P )2 = I − 2P + P 2 = I − P P is symmetric implies that

I-P is symmetric.

Showing that (I − P )a for some given a projects on the orthocomplement of Xb is

equivalent to showing that (I − P )a is orthogonal to Xb which is algebraically the

same as has been demonstrated above.

Exercise 1.6

Part (i)

Suppose β+ is not a solution to the normal equation. Then:

X ′Xβ+ 6= X ′y where β+ = (X ′X)+X ′y

This implies:

(X ′X)(X ′X)+X ′y 6= X ′y

By using the singular value decomposition from exercise 1.4 we know X = UΣV ′

where V is the eigenvector matrix
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OΛO′OΛ+O′OΣ′U ′y 6= OΣ′U ′y

OIrΣ
′U ′y 6= OΣ′U ′y

X ′y 6= X ′y

which is a contradiction.

Part (ii)

Show that a given β with X ′Xβ = 0 implies β′β+ = 0:

For this we show that X ′Xβ = 0 implies X ′Xβ+ = 0:

X ′Xβ = OΛO′β = 0

O′OΛO′β = ΛO′β = O′0 = 0

since O is orthonormal. Furthermore we know that Λ+ = Λ+Λ+Λ, so:

Λ+O′β = Λ+Λ+0 = 0

OΛ+O′β = (X ′X)+β = 0

the transpose of the latter term is equally zero: β′(X ′X)+ = 0′. So we have

β′β+ = β′(X ′X)+X ′y = 0′X′y = 0

Part (iii)

Show that ||β+|| ≤ ||β|| where β is a solution to X ′Xβ = X ′y:

||β+|| = ||(X ′X)+X ′y|| = ||(X ′X)+(X ′X)β|| =

= ||OΛ+O′OΛO′|| = ||OΛ+ΛO′||

since (X ′X)+ = OΛ+O′ and (X ′X) = OΛO′. Moreover O′O = I since O is orthonor-
mal.
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Denote with Ir the ”pseudo-identity matrix” as the matrix with the first r entries in
thediagonal equal to one, and the reamining entries equal to zero.

Ir =

0BBBBBBBBBBBBB@

1 0 . . . 0 0 . . .

0 1 . . . 0 0 . . .

.

..
.
..

. . .
...

...

0 0 . . . 1 0 . . .

0 0 . . . 0 0 . . .

...
...

. . .

1CCCCCCCCCCCCCA
As can easily be seen Λ+Λ = Ir, and OIrO

′ = Ir. So:

||OΛ+ΛO′|| = ||Irβ|| ≤ ||β||

So ||β+|| ≤ ||β||. The latter conclusion follows from the fact that Irβ is a vector with

only the first r entries equal to those of β while the entries from r + 1 to k are zero.

Exercise 1.7

(1) Show that R2 as defined in class for inhomogenous regression (including the con-

stant term) is equal to

R2 = r2
yby =

s2
yby

syysbyby
Definitions:

1. syby = 1
T

∑T
i=1(yi − y)(ŷi − ŷ)

2. syy = 1
T

∑T
i=1(yi − y)2

3. R2 =
sbyby
syy

Hint: Show that syby = sbyby
Starting with the definitions We know that TY

2
= T Ŷ

2

so Ŷ = Y . From

sY bY = (Y ′Ŷ − TY Ŷ ) = (Y ′Ŷ − TY
2
)

sbY ′ bY = (Ŷ ′Ŷ − T Ŷ
2

) = (Ŷ ′Ŷ − TY
2
)

8



To show < Y, Ŷ >=< Ŷ , Ŷ > .

Proof:

< Ŷ , Ŷ >=< Y − û, Ŷ >

=< Y, Ŷ > −< û, Ŷ >︸ ︷︷ ︸
0

=< Y, Ŷ >

(2) Show that R2 = 0 if the constant ist the only regressor

Proof:

If the constant is the only regressor then X ∈ RT×1 so the linear regression model

looks like

YT×1 = XT×1βT×1 + uT×1

So X is a column vector of dimension T × 1 with xi = 1 ∀i = 1, . . . , T which we will

denote as 1. The least square estimator βLS = (X ′X)−1X ′Y will in this case look like:

βLS = [1′1]−11′Y

= (T )−11′Y

= [
1

T
,
1

T
,
1

T
, . . . ,

1

T
, ][Y1, Y2, Y3, . . . , YT ]′

=
1

T

T∑
i=1

Yi

= Y

Hence Ŷ = XβLS = 1Y = [Y , Y , . . . , Y ]′. If we reconsider the expression for the

R2, then it will be zero if sY bY = 0.
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Calculating sY bY for our specific Y gives us:

sY bY =
1

T

T∑
i=1

(Yi − Y )(Ŷi − Ŷ )

=
1

T

T∑
i=1

(Yi − Y )(Y − Y )

=
1

T

T∑
i=1

(Yi − Y )× 0

= 0

So R2 will always be zero if we regress Y on simply the constant.

Exercise 1.8

We have to show

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β − β̂)′X ′X(β − β̂)

Multiplying (y −Xβ)′(y −Xβ) and exanding with Xβ̂ yields
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(y −Xβ)′(y −Xβ) = [(y −Xβ̂)− (Xβ −Xβ̂)]′[(y −Xβ̂)− (Xβ −Xβ̂)]

= [(y −Xβ̂)′ − (X(β − β̂))′][(y −Xβ̂)− (X(β − β̂))]

= (y −Xβ̂)′(y −Xβ̂)− (y −Xβ̂)′︸ ︷︷ ︸
y−by

(X(β − β̂))− (X(β − β̂))′ (y −Xβ̂)︸ ︷︷ ︸
y−by

+ (X(β − β̂))′(X(β − β̂))

= [(y −Xβ̂)′(y −Xβ̂) + ((β − β̂)′X ′)

(X(β − β̂))]− (y − ŷ)′(Xβ − ŷ)− (Xβ − ŷ)′(y − ŷ)

= [(y −Xβ̂)′(y −Xβ̂)

+ ((β − β̂)′X ′)(X(β − β̂))]− û′(Xβ − ŷ)− (Xβ − ŷ)′û

= [(y −Xβ̂)′(y −Xβ̂)

+ ((β − β̂)′X ′)(X(β − β̂))]− û′Xβ︸ ︷︷ ︸
0

+ û′ŷ︸︷︷︸
0

− (Xβ)′û︸ ︷︷ ︸
β′X′bu=0

+ ŷ′û︸︷︷︸
0

= [(y −Xβ̂)′(y −Xβ̂) + ((β − β̂)′X ′)(X(β − β̂))]

Exercise 1.9

Show the second claim of item (iii) of the Frisch-Waugh theorem as discussed.

Frisch Waugh Theorem: We partition our regressor matrix X into X = [X1, X2]

with X1 ∈ RT×k1 , X2 ∈ RT×k2 and are assuming that rk(X) = k1 + k2. Then the

residuals of

1. y = X1β1 + X2β2 + u

are the same as when regressing

2. β̂2 = (X̃2

′
X̃2)

−1(X̃2

′
ỹ)
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with P1 = (X ′
1X1)

−1X ′
1 and M1 = I − P1. Here we regress first y on X1 and

denote the residuals of this regression as ỹ = M1y. In a second step we then

regress X2 on X1 and again compute the residuals denoted as X̃ = M1X2. In

a third step we use the formerly computed residuals and run the regression as

stated in (2). In the lecture it was shown that the residuals of (2) are the same

as the ones of (1). We are now asked to show that when running

3. β̂2 = (X̃2

′
X̃2)

−1(X̃2

′
y)

the residuals of (3) are not equal with that of (1)=(2). In (3) we use the original

y-variable instead of ỹ.

Proof:

Write Normal Equations in a partitioned form:

(1*) X ′
1X1β1 + X ′

1X2β2 = X ′
1y

(2*) X1β1 + X ′
2X2β2 = X ′

2y

Now consider the first equation (1*):

X ′
1X1β1 + X ′

1X2β2 = X ′
1y (6)

X1β1 + P1X2β2 = P1y (7)

X1β1 = −P1X2β2 + P1y (8)

To get from (1) to (2) we have to premultiply (1) by X1(X
′
1X1)

−1. Now look at equation

(2*) and plug in the expression for X1β1:
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X1β1 + X ′
2X2β2 = X ′

2y (9)

X ′
2[−P1X2β2 + P1y] + X ′

2X
′
2X2β2 = X ′

2y (10)

−X ′
2P1X2β2 + X ′

2P1y + X ′
2X2β2 = X ′

2y (11)

−X ′
2P1X2β2 + X ′

2X2β2 = X ′
2y −X ′

2P1y (12)

X ′
2

projector is idempotent and symmetric︷ ︸︸ ︷
[I − P1] X2β2 = X ′

2[I − P1]y (13)

X ′
2[I − P1]

′[I − P1]X2β2 = X ′
2[I − P1]y (14)

X̃2

′
X̃2β2 = X̃2

′
y (15)

β̂2 = (X̃2

′
X̃2)

−1(X̃2

′
y) (16)

The residuals ỹ = û = ỹ − X̃2β̂2 do not equal u(∗) = y − X̃2β̂2.Only in the case

when y equals ỹ.

Exercise 1.10

CC
′

= (LX+)(LX+)
′
+ (C − LX+)(C − LX+)

′

= (LX+)(LX+)
′
+ CC

′
+ (LX+)(LX+)

′ − C(LX+)
′ − (LX+)C

′

= CC
′
+ 2L(X

′
X)−1X

′
[
(X

′
X)−1X

′
]′

L
′ − CX(X

′
X)−1L

′ − L(X
′
X)−1X

′
C

′

= CC
′
+ 2L(X

′
X)−1X

′
X(X

′
X)−1L

′ − CX(X
′
X)−1L

′ − L(X
′
X)−1X

′
C

′

= CC
′
+ 2L(X

′
X)−1L

′ − L(X
′
X)−1L

′ − L(X
′
X)−1L

′

= CC
′

Using the following facts:

• as X has full rank, we know that X+ = (X
′
X)−1X

′
,

•
[
(X

′
X)−1

]′
=

[
(X

′
X)

′]−1
=

[
X

′
X

]−1
,
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• CX = L and therefore X
′
C

′
= L

′
.

Exercise 1.11

The mean squared error (MSE) of an estimator β̃ of β is defined as MSE(β̃) =

E[(β̃ − β)′(β̃ − β)]. Show the following claims:

(i) If β̃ is unbiased with VCV Σβ̃β̃, then it holds that MSE(β̃) = tr(Σβ̃β̃), where

tr denotes the trace of a matrix.

For any estimator of β ∈ Rk we can rewrite

MSE(β̃) = E[(β̃ − β)′(β̃ − β)] = E[
k∑

i=1

(β̃i − βi)
2]

Now since β̃ is unbiased, E(β̃) = β, and thus Σβ̃β̃ = E[(β̃ − β)(β̃ − β)′].

Further tr(Σβ̃β̃) =
∑k

i=1[E(β̃i − βi)
2] = E[

∑k
i=1(β̃i − βi)

2] = MSE(β̃) QED.

(ii) Let β̃1 and β̃2 be two unbiased estimators with covariance matrices Σβ̃1β̃1
and Σβ̃2β̃2

.

Show that it holds that

Σβ̃1β̃1
≤ Σβ̃2β̃2

⇒ MSE(β̃1) ≤ MSE(β̃2)

What does this imply for the OLS estimator?

Define ∆ := Σβ̃2β̃2
− Σβ̃1β̃1

. Since Σβ̃1β̃1
≤ Σβ̃2β̃2

, ∆ must be non-negative definite.

Now, using the results from (i), write

MSE(β̃2)−MSE(β̃1) = tr(Σβ̃2β̃2
)− tr(Σβ̃1β̃1

) =
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tr(Σβ̃2β̃2
− Σβ̃1β̃1

) = tr(∆) =
k∑

i=1

(e′i∆ei) ≥ 0

where ei ∈ Rk is a vector with 1 in the i-th row and all zeros else. Because ∆ is

non-negative definite, all the elements in this sum must be non-negative, and therefore

also the total sum. Thus MSE(β̃1) ≤ MSE(β̃2). QED

Since the OLS β̂ has the ”smallest” VCV matrix among all linear unbiased esti-

mators of β, this implies that it also has smaller or equal MSE among this class of

estimators.

(iii) Minimize MSE(β̃) over all linear unbiased estimatiors β̃. From the lecture we

know that Σβ̃β̃ = σ2DD′ for all unbiased estimators of β, β̃ = Dy (DX = I).

From (i):

MSE(β̃) = tr(Σβ̃β̃) = tr(σ2DD′)

Using the decomposition lemma, we can write

DD′ = (X+)(X+)′ + (D −X+)(D −X+)′

hence

tr(σ2DD′) = tr
(
σ2(X+)(X+)′ + σ2(D −X+)(D −X+)

)
=

= tr
(
σ2(X+)(X+)′

)
+ tr

(
σ2(D −X+)(D −X+)

)
=

= σ2

tr

 (X+)(X+︸ ︷︷ ︸
independent of D and pos. semi-def.

)′

 + tr

(D −X+)︸ ︷︷ ︸
R

(D −X+)︸ ︷︷ ︸
R′


We minimize this expression over D, where R is R = (r′1, . . . , r

′
T ).

tr(RR′) =
T∑

i=1

||ri||2 ≥ 0 since ||ri||2 ≥ 0 ∀i

Now tr(RR′) = 0 which is equivalent to r′i = (0, . . . , 0) ∀i which is equivalent to

D = X+.

This implies that tr(σ2DD′) is minimized for D = X+.
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