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1 Introduction

Statistical inference that neglects model uncertainty leads to overstated confidence in statistical
estimates, as has been amply demonstrated since the seminal contributions by Raftery (1995) and
Hoeting et al. (1999). Bayesian Model Averaging (BMA) tackles such model uncertainty directly
by basing inference on a weighted average of all potential covariate combinations, or 'models’. In
a Bayesian setting, these weights arise naturally as posterior model probabilities that correspond
to the classical likelihood concept. Relying on this framework, numerous authors (e.g., Raftery,
1995; Ferndndez et al., 2001a; Liang et al., 2008) have demonstrated that BMA outperforms other
strategies in terms of predictive ability. Virtually all of them have so far concentrated on linear
models with model-specific inference based on the ’Normal-Gamma’ coefficient prior with Zellner’s g
(Zellner, 1986). This prior structure has proven popular in BMA, since it leads to simple closed-form
expressions of posterior statistics and because it reduces prior elicitation to the choice of a single
scalar hyperparameter g. This shrinkage parameter determines how far a model’s coefficients are
shrunk toward zero: High values for g are meant to embody weak prior knowledge and correspond
to model estimators that are close to least squares results. In contrast, low values for g imply
less reliance on the data and posterior coefficients closer to their prior values (zero). Crucially, the
parameter g shapes the weights of models in BMA. The exact specification of g is subject to intense
debate,! but the use of a constant hyperparameter g as such has been less frequently criticized.

This paper demonstrates that the practical advantages of Zellner’s g come at a serious cost: g exerts
non-negligible influence on posterior inference since it governs how posterior mass is spread over the
models. For given data, high values of g concentrate posterior mass on few models, which runs the
risk of overfitting. In contrast, small values of g spread posterior model probabilities (PMPs) more
evenly among the models (irrespective of model sizes and size penalty terms). Posterior statistics, in
particular PMPs and the covariates’ posterior inclusion probabilities are thus notoriously sensitive
to the value of the g prior. In other words, the researcher’s prior on g determines how much posterior
mass is attributed to the few best-performing models — regardless of whether these have been
generating the data.? In this paper, we establish the conditions for this g-induced concentration
of posterior mass (which we will henceforth refer to as the supermodel effect). While crucial in
terms of prior sensitivity, this feature went more or less unnoticed in previous simulation studies
that focused on ’asymptotic consistency’: In order to uncover a single 'true’ model in Monte Carlo
simulations with a weak noise component, such exercises profit from a large value for g that induces
posterior mass to concentrate on the best-performing model.

The proper Bayesian approach to address this problem is to introduce a non-degenerate hyperprior
distribution on g, and thus ’let the data choose’. Such a flexible prior allows for shrinking the
estimated coefficients more toward zero under models with a large noise component,? i.e., inducing
data-dependent shrinkage. Only few papers have applied such hyperpriors in BMA so far: Among
them are Strachan and van Dijk (2004), Cui and George (2008), Liang et al. (2008), and Ley

!The literature on the optimal choice of g (e.g., Liang et al., 2008; Ley and Steel, 2011; Hoeting et al., 1999;
Ferndndez et al., 2001a; Eicher et al., 2011) has concentrated on two theoretical considerations: First, asymptotic
consistency, i.e. the choice of g such that BMA asymptotically uncovers ’the true model’. However, from a Bayesian
viewpoint, many models might be ’true’, in the sense that they are generating the data examined. Second, the
specification of g was studied in terms of its virtues as a model size penalty term to favor parsimonious models. From
a Bayesian perspective, however, such preferences on parameter size should rather be considered in the formulation
of model priors, which constitute a crucial component of BMA.

ZNote that this effect not only poses a risk for model averaging, but also for model selection. For instance, a
too large value for g might lead to underestimating the model uncertainty related to selecting a particular model.
Moreover, it might increase the risk of selecting the 'wrong’ model, cf. discussion in section 3.

31.e. by up- or downweighting the prior beliefs on coefficients 3.



and Steel (2011). These authors have proposed various hyperprior specifications in response to
theoretical issues other than the problem described above,? but none of them has focused on the
expected properties of flexible priors under small samples. Most of these hyperpriors have in
common that their respective statistics are not available in closed form, thus forcing the researcher
to resort to MCMC sampling. The contribution by Liang et al. (2008) differs in providing a closed-
form solution — which is so computationally demanding that they implement it via analytical
approximations. In this paper, we provide algebraic transformations of the Liang et al. (2008)
prior that allow for a sound and accurate numerical application at minimal computational cost.
We use this augmented hyper-g prior to show that the model-specific advantages of the hyper-g
prior also extend to inference under model uncertainty, as it is not exposed to the supermodel
effect a priori. The hyper-g prior adjusts the distribution of posterior mass in dependence of the
information provided by the data. Thus if noise dominates the data, PMPs under the hyper-g
prior will be distributed more evenly, whereas in the case of minor noise, posterior mass will be
concentrated even more than under fixed settings with large values for g.

Based on the above considerations, the contribution of our paper is fivefold: First, we show that
fixed coefficient priors may introduce too much or too few shrinkage into individual models, but also
have an even stronger impact on the concentration of model probabilities in BMA.?> We demonstrate
the supermodel effect analytically, in a simulation exercise and an empirical application. Second,
we propose a particular prior framework that reconciles the Liang et al. (2008) hyperprior with
asymptotic consistency, and provide closed-form representations for important posterior quantities.
Third, we show further properties of the hyper-g prior: We demonstrate how its posterior statistics
are analytically related to the strand of "Empirical Bayes’ priors, and why their results hardly differ
under data-sets with a weak noise component. Moreover, we show the relationship of the hyper-g
to the familiar OLS F-statistic as a measure of goodness-of-fit. Fourth, we show how the superior
robustness of the hyper-g prior addresses the supermodel effect under a simulation exercise with
both a simple and a complex data-generating process. Our results show that under noisy data the
hyper-¢g prior dilutes posterior mass among models whereas the popular fixed priors incorrectly
favor one (wrong) model. We examine the forecasting properties of various settings for g by means
of a simulation study, which points to superior predictive ability of the hyper-¢g prior under varying
signal-to-noise ratios. Finally, our empirical exercise illustrates this advantage in the context of
growth regressions. We show how far the BMA parameter instability over revisions of growth data
(as found by Ciccone and Jarociniski (2010)) is due the supermodel effect, and that the hyper-g
prior can reduce it to a great extent.

The remainder of this study is organized as follows: the next section briefly reiterates the concept
of Bayesian model averaging and its most popular prior settings. Section 3 sketches the reasons un-
derlying the supermodel effect and provides formal conditions for its presence. Section 4 introduces
the hyper-g prior, outlines further posterior statistics and properties, and introduces an implemen-
tation strategy of practical relevance. Section 5 presents a simulation exercise that examines the
supermodel effect inherent to traditional priors and highlights the predictive performance of flexible
priors. The following section demonstrates the sensitivity of posterior results to the choice of g by
means of an empirical application to a prominent growth data set. Section 7 concludes the paper.

4See footnote 16 for a discussion of these papers’ motivations.

5The detrimental effect of fixed priors on robustness and the advantage of hyperpriors have not only been noted in
Bayesian regression-type models, but also other Bayesian frameworks (see, e.g., Giannone et al. (2012) for a similar
motivation in the case of Bayesian VARs). The impact on model averaging, however, is novel, to the best of our
knowledge.



2 Bayesian Model Averaging under Zellner’s g prior

This section summarizes the popular set-up of Bayesian model averaging (BMA) under the natural
conjugate framework with Zellner’s g prior and reviews the prior settings that have resurfaced
most often in the literature so far. Consider the canonical regression problem of sample size N
with the dependent variable in the N x1 vector y, X5 an N Xk, design matrix of covariates, and &
an N-dimensional vector of residuals in the following, linear model Mj:

y=1los+ X8, +¢

Here « denotes the (scalar) intercept, and (s the the kg x 1-vector of unrestricted regression
coefficients. The residuals are assumed to be normally IID with variance o2, i.e. € ~ N(0,cI).
Note that X, can be assumed to be centered (X1 = 0) without loss of generality, as this will
only affect the posterior distribution of the constant ays. Bayesian Model Averaging deals with
uncertainty about the model M, by drawing on the model-specific inference presented above. In
the generic linear BMA problem, model uncertainty focuses on the choice of covariates X, which
may be drawn from a set of K potential regressors. This induces 2% unique covariate combinations,
as represented by the model candidate space M = {M;, Mo, ..., Myx} (cf. Hoeting et al., 1999,
for a more detailed account).

The Bayesian framework calls for specifying a prior distribution on the model’s parameters «,
Bs, and o2. The bulk of the BMA literature (e.g., Raftery, 1995; Chipman et al., 2001), favors
the natural-conjugate approach, or its variant outlined by Ferndndez et al. (2001a): In order to
represent lack of information over constant and variance, place improper priors on constant p(a)) o< 1
and variance p(c) oc 071.5 The prior on coefficients 3 is assumed to be normal and potentially
allows for model-specific elicitation of prior expected value and coefficient covariance. However, the
explicit formulation of these hyperparameters is difficult to perform given the many combinations
possible in model selection problems. Virtually all linear BMA applications have thus opted for
a common uninformative prior centered at zero, with the variance structure given by Zellner’s g
prior (Zellner, 1986):
Bslo?, My, g ~ N(0,0%g(X. X))

This prior assumes the coefficient covariance to be proportional to the posterior covariance ex-
pression (X’X,)~! that arises from the sample, with the scalar g determining how certain the
researcher is in centering the prior coefficient distribution at zero. Apart from offering computa-
tional efficiency, Zellner’s g thus reduces the elicitation of the covariance structure to choosing the
scalar g. Employing Bayes’ theorem via

p(Bely, Xs, M,) = / p(Bsl My, X, 0%)dp(0?)
0

ylelds the posterior coefficient distribution as k—variate student-t” with expected value E(B|y, X, My, g) =

T +g ﬁs, where ﬁs denotes the standard OLS estimator for M,.8 Note that the posterior expected

5Note that the specification for o and o departs from earlier tradition which typically elicited proper priors for
the two parameters. However, both choices do not affect the crucial posterior statistics: The improper prior on the
constant allows for an easy disentanglement of the constant with respect to the other coefficients. In contrast to the
traditional Gamma-priors, the improper prior on o offers the advantage of being invariant under scale transformations
(Ferndndez et al., 2001a, p. 391)

"Note that this posterior distribution requires N > 2.

8The posterior variance of B is 2 (1 - mRQ) lj_;g (X;XS)*l’ where y = y — 1y denotes the centered response

vector.



value is a convex combination of its OLS estimator and the prior expected value (zero) weighted
by the shrinkage factor 1149. The larger the shrinkage factor, the more importance is attributed to
sample data rather than to prior information.

For its use in BMA, the main advantage of Zellner’s g is that it yields a closed-form expression for
the marginal likelihood of M,:®

N—-1
2

I My,9) o< (14 9)"F (1 - (£,R?)” (1)

with ks denoting the number of covariates included in model My and R2 its OLS R-squared. This
marginal likelihood is crucial in determining the posterior model probability that arises from Bayes’
theorem p(M,ly, X, g) x p(y|Ms, X, g)p(Ms) as an update of a prior model probability p(Mj):

p(yIMs, X, g)p(Ms)
>3 p(ylM;, X, g)p(M;)

p(Msly, X, g) = (2)

Multiplied with a normalization constant, these posterior model probabilities serve as model weights
in Bayesian model averaging. In this vein, the marginal posterior distribution of any statistic ©

may be obtained as a mixture over posterior model probabilities:'"
2K
p(®ly, X,9) = > p(Oly, X, M;)p(M;ly, X, g)
j=1

This property is particularly useful in computing the posterior moments of the coefficient vector
3 as a weighted average over all models.!! Likewise, posterior inclusion probabilities (PIPs), used
for assessing the importance of single covariates, are obtained as the sum of probabilities for all
models in which the covariate is included.

In view of equation (2), BMA inference hinges on posterior model probabilities and, in turn, on two
important prior specifications: the model priors p(M,) and Zellner’s g prior for the coefficients: The
Bayesian framework calls for defining prior model probabilities p(;) for all models contained in the
model space j € {1,2,..., 2K }. While advocates of purism may call for subjective prior specification
of p(Ms), the number of model candidates renders this virtually infeasible. Consequently, most
authors have relied on the uniform model prior p(M;) = 27K whereas several (Brown et al., 1998;
Sala-i-Martin et al., 2004; Ley and Steel, 2009) have proposed to specify model priors in dependence
of average model size kg, typically in such a way that prior elicitation is reduced to choosing the
prior expected model size.

In addition to model priors, the choice of Zellner’s g prior crucially affects marginal likelihoods
p(y|Ms, X, g) and thus PMPs. Its discussion so far has focused on two considerations:

“Note that although the term ((y — 7)’(y — ﬂ))7¥ is constant over models, it is frequently included in the
marginal likelihood expression, such as in Ferndndez et al. (2001a) — while others, such as Liang et al. (2008) omit it.

10Note that the concept lined out in equation (2), and its implication for posterior statistics, is of course not limited
to linear models alone. However, the bulk of the empirical BMA literature focuses on linear models using the g-prior
described in this section. The purpose of this paper is to discuss the g-prior’s consequences for linear models, and
thus it refrains from discussing the implications of similar priors for more complex models.

1Note that we have retained the improper priors for a and ¢ as common to all models.



e Consistency: The choice of g such that posterior model probabilities asymptotically uncover
‘the true model’” My, i.e. p(Mrly, X,g) — 1 as N — oo

ki—ks
e The importance of g as a penalty term enforcing parameter parsimony (the factor (14 g) 3

in (2))

Both issues have been reviewed by Fernandez et al. (2001a): With respect to consistency, they
prove that a choice of ¢ = w(N) such that limy_,oo w(N) = oo and limy_,e0 % = 0 ensures
consistency as it was mentioned above. Still, consistency leaves open the exact specification of g.
Over the course of more than a decade, various ’automatic’ or ’default’ specifications have been
put forward (e.g., Ferndndez et al., 2001a; Eicher et al., 2011) that typically specify g according to
sample size N. Note that the bulk of the literature concentrates on priors fizing g in such a way
that the penalty term (1 4 g)_%s in (2) asymptotically mimics popular information criteria.!? In
particular, two settings for g resurface steadily in the literature: The Unit Information Prior (g-UIP)
corresponds to g = N. Through its dependence on sample size it is a consistent prior and draws on
the notion that the ’amount of information’ contained in the prior equals the amount of information
in one observation (Kass and Wasserman, 1995). Ferndndez et al. (2001a, p.424) demonstrate that
as N — oo the log of the Bayes factor for two models approaches the ratio of their Bayesian
information criteria. Secondly, setting g = K2 (g-RIC) calibrates the posterior model probability
to asymptotically match the risk inflation criterion proposed by Foster and George (1994). Based
on an extensive study of various specifications for g, Ferndndez et al. (2001a) recommend the
"benchmark’ prior which bridges the g-UIP and the g-RIC by setting g = max(N, K?).

3 The Supermodel Effect

The advantages of Zellner’s g prior have fostered its widespread use in BMA, even though its
exact specification is still subject to debate (as highlighted by the previous section). In general,
g determines the tightness of the prior distribution on coefficients 5 around their prior expected
value zero: Large g implies a diffuse prior distribution, i.e. the researcher is very uncertain about
the prior expected value and relies heavily on the data. Small g means a prior that is more tightly
centered at zero,' and leaves less scope to the data to determine the coefficients. In this sense,
it is evident why most ¢ specification schemes aim to set this hyperparameter according to data
quality: A high signal-to-noise ratio warrants strong reliance on the data and thus a high g, while
an important noise component should be met with a low g.

In practice, the choice of g can have considerable consequences for the robustness of BMA results.
For instance, with very noisy data, a large g could attribute too much weight to results that are
mainly driven by a particular realization of the error term. Such a case may lead to situations
as in Ciccone and Jarociniski (2010), who show that BMA under the ’benchmark’ specification
from Ferndndez et al. (2001a) produces results that differ strikingly over small revisions to the

12Information criteria are a widely used approach for model selection and are conceptually similar to the marginal
likelihoods that arise from incorporating model uncertainty in a Bayesian framework (Indeed, several popular in-
formation criteria (IC) can be derived from such a setting, such as Schwarz (1978)). Drawing on this similarity,
"frequentist’ model averaging techniques rely on IC in order to obtain ’posterior’ model weights (see Claeskens and
Hjort, 2008, for an overview). Due to their numerical connections, empirical results under IC-based linear model
averaging are usually quite similar to BMA with g-priors that mimick IC. In this paper, we therefore forgo the explicit
discussion of IC-based model averaging techniques, and concentrate on their Bayesian analogues.

131n general, small g implies centering at the prior (expected values of coefficients). Here, we follow the bulk of the
literature in presupposing coefficient priors to be centered at zero.



response variable. Such robustness problems can arise from a too loose g that focuses posterior
model mass on too few ’supermodels’. In this section, we demonstrate that g is positively linked
with the concentration of posterior model probabilities — and that this supermodel effect matters
to empirical practice. A look at the role of the shrinkage factor ﬁ in the marginal likelihood from
(1) provides some intuition:

ks _N-1
p(yIMs,g) o (1= £45) % (1 - ;R:) 2 (3)
A B
The shrinkage factor l*’fg affects marginal likelihood (and thus posterior model probability) via a

size penalty term (A) and a model fit term (B). The term (A) shapes the distribution of posterior
mass between different model sizes, while term (B) determines the concentration of PMP within
models of the same size ks. Among models of the same size kg, larger ﬁ will increase the relative

posterior weight of the models with the largest R2. The term (B) thus implies a direct positive link
between the shrinkage factor and relative PMP concentration among models of the same size k.

The term (A) has stimulated most of the debate on the g prior through its virtues as a size
penalty term that could mimic well-founded information criteria. But from a Bayesian viewpoint,
size penalty represents prior preferences on model size that should be fused into the formulation
of the model prior rather than a coefficient prior. Instead, one should consider that the term
(A) can reinforce the link between g and PMP concentration: Increasing the shrinkage factor
1%9 strengthens the size penalty and skews the posterior model size distribution to smaller (more
parsimonious) models. When most of the posterior mass focuses on models below the size of K/2
(which typically applies to empirical exercises), strengthening the size penalty means concentrating
mass on model sizes that comprise fewer models to choose from. In this sense, the term (A)

contributes to a positive link between g and PMP concentration.

The interplay of posterior model size distribution (from term (A)) and relative PMP concentration
among models of a given size (from term (B)) is not straightforward, and can depend on data
set characteristics and the particular value of g. Proposition 1 therefore formally pins down the
conditions for the supermodel effect:

PrOPOSITION 1 For linear BMA with a fired common Zellner’s g prior, a given realization of
(y, X), and any model prior that does not depend of g, the following holds: The cumulative posterior
probability of the best r models have a non-negative derivative with respect to g if Ey(kly, X)+n <
E(kly, X), where E(k|y, X) represents posterior model size and E,(k|y, X) expected posterior model
size of the best r models; with n > 0 vanishing as N — oo or g — oo.

Thus an increase in g will increase the concentration of PMP on the most important models (by
PMP), as long as their average model size is somewhat smaller than the overall posterior model size.
Conversely, the most important models could only lose PMP with increasing g if their model sizes
are relatively large. In any case, the cumulative PMP of the most important models will increase
almost sure over the domain of ¢g.!* Proposition 1 also holds implications for the special case of
model selection (as opposed to model averaging): Increasing g attributes increasingly (perceived)
posterior importance to the model which the largest PMP (if its model size is smaller than average
model size). However, at some point the conditions of Proposition 1 will not be met locally, and the
PMP of this best-performing model will be overtaken by the PMP of a model with fewer parameters.

Y This result obtains trivially from the fact that the PMP for the null model tends to 1 as g approaches infinity,
and that the null model will be the most important model for all g greater than some finite g.



Thus, model selection with high g values under fixed priors risk selecting a too small model (that is
possibly not even nested in the ’ true’ model), and underestimating the model uncertainty around
it.

In order to illustrate the supermodel effect, consider the BMA results from the growth data set
as in section 6, for different values of g and under uniform model priors.!> Figure 1 (top panel)
exhibits the posterior model size as well as the cumulative posterior probability of the best 2,000
models for varying values of g. The results show that increasing ¢ leads to a marked reduction in
posterior model size, while increasing the concentration of posterior model probabilities. The rate
of increase in the PMP of the best 2,000 models certainly depends on the characteristics of the
data set and might vary locally, but the exercise illustrates that the concentration of PMP broadly
intensifies with increasing g. In particular, this effect applies to ranges of g that are typically used
in the empirics of economic growth.

The previous discussion has shown that term (B) in equation (3) directly links g positively with
PMP concentration. In contrast, term (A) might have an ambiguous effect, which also underlies
the qualifying conditions in Proposition 1. In order to disentangle the two effects in the empirical
exercise, we neutralize the term (A) by the following model prior:
ks
(1+g)2
M) = —F——
p(M) (VT3g+ 1)K

Such a model prior exactly cancels the size penalty term (A) in the marginal likelihood (3). The im-
pact for differing values of g is shown in Figure 1 (bottom panel). When size penalty is neutralized,
higher ¢ leads to increased posterior model size, as posterior model mass then concentrates more
on the least parsimonious model which have the largest R?. As expected, the cumulative PMP
of the best 2,000 models increases with g, although at a considerably lower pace than under the
uniform model priors discussed above. We therefore conclude that for the growth data examined

in this paper, the supermodel effect has a sizable impact, and is mainly driven by the size penalty

term (1 — 1—19)7‘9.

Note that the supermodel effect not only has implications for the skewness of the PMP distribution,
but also for the regressors’ posterior inclusion probabilities (PIPs). The term (B) in (3) establishes a
direct positive link between g and the concentration of PIPs, as larger g leads to more concentration
in the relative PMPs for each model size. The term (A) can reinforce this effect: Note that the
variance of R? for models of size k is by definition (weakly) greater than the variance of R? for
models of size K — k. This implies that relative PMP concentration among models of the same size
k is more intense for smaller k. Increasing g therefore tends to skew the relative distribution of the
PIPs. In view of Proposition 1 and the above illustration we therefore conclude that g is positively
linked not only with the concentration of PMPs, but also of posterior inclusion probabilities.

4 Flexible priors: The Hyper-g Prior

The previous section has demonstrated the problems with fixed g priors: First, it might be in-
sensitive to assume a common parameter for all models considered, and second, eliciting the right
parameter value strongly risks over- or under-identification with respect to posterior model and
inclusion probabilities. Introducing a flexible hyper-prior on g, in contrast, would allow to update

"5Results are from BMA estimations with uniform model priors of the Sala-i-Martin et al. (2004) data set with
growth and initial income according to the Penn World Tables revision 6.3. Figure 1 displays the result for 24 different
values of g, each estimated from MCMC sampling with 200,000 burn-in draws and 2,000,000 subsequent iterations.



prior beliefs according to data quality, and thus mitigate the risks from choosing a prior value for
g.

In principle, the concerns raised in the previous section might be addressed by virtually any flexible
hyper-prior setting for g. Based on different motivations, recent contributions have introduced
several candidates that could potentially be used to that end (cf. Ley and Steel, 2011, for an
overview). However, most of them do not yield closed form solutions for posterior statistics of
interests. Instead, those have to be obtained by numerical sampling techniques, which complicates
the computationally demanding task of evaluating models in BMA. Among the proposed candidates
g, only the hyper-g prior by Liang et al. (2008) stands out as fairly flexible prior distribution that
allows for closed-form posterior statistics. We therefore concentrate on the latter approach to
demonstrate the properties of hyper-priors vs. fixed priors.

Liang et al. (2008) introduce two priors motivated on theoretical grounds,'® among them the closed-
form hyper-g prior. While they ingeniously outline the basic features of the hyper-g prior, their
posterior expressions involve ratios of hypergeometric functions, which are difficult to evaluate
computationally. For feasible computational implementation, the authors thus resort to Laplace
approximations — an approach that risks numerical inaccuracies, in particular with respect to the
mentioned ratios. This section therefore introduces algebraic transformations of these expressions
that yield accurate statistics at low computational cost. Moreover it complements Liang et al.
(2008) by establishing additional, common posterior expressions, in particular with respect to
second moments of posterior parameters and predictive distributions. Finally we proceed to show
some properties of the hyper-g prior, in particular how it be may reconciled with consistency in the
sense of Ferndndez et al. (2001a), its asymptotic equivalence to the Empirical Bayes (EBL) prior,
and the relationship between its posterior statistics and the OLS F-statistic.

4.1 The hyper-g prior and its posterior statistics

The hyper-g prior for g translates into a Beta prior on the shrinkage factor ﬁ that is common to
all models (Liang et al., 2008, p. 415):

g a
I ora (1,2 1)
cta B

1+g
ie. ﬁ is Beta distributed with F (ﬁ) = %.17 The elicitation of ¢ is therefore supplanted by the

choice of the hyperparameter a € (2,00): a = 4 renders the prior distribution of 1%9 uniform, while
moving a close to 2 concentrates the prior mass on the shrinkage factor close to 1. Conversely, any
a > 4 tends to concentrate prior mass near 0. Liang et al. (2008) therefore omit those cases and
concentrate on a € (2,4] — a strategy we will follow in this study.

An integral representation for the Gaussian hypergeometric function o F (a, b, ¢, z) allows for straight-
forwardly establishing the model-specific posterior distribution of the shrinkage factor (Abramowitz
and Stegun, 1972, p.563).

%Liang et al. (2008) motivate their paper with two "paradoxes’ that arise with constant g. First, they raise a BMA
formulation of 'Bartlett’s paradox’ stating that if ¢ — oo for fixed N and K, the Bayes Factor B(Ms : M) of any
model with respect to the null model eventually goes to zero. Second, they refer to an ’information paradox’ stating
that for fixed N and K, if the R-squared of model M, converges to unity, its Bayes factor with respect to any other
fit-wise inferior model does not go to infinity. Moreover, both arguments bite only in the case when N and K are
kept constant: Bartlett’s paradox in this case may be less relevant as typical specifications for g require it to rise
in line with V. The ’information paradox’ does not contradict the standard consistency argument that requires the
respective Bayes Factor to converge to infinity only when N tends likewise to infinity. See the comment by Zellner
(2008) for a more detailed discussion.

'"Note that this is equivalent to putting the following prior on g: p(g) = %‘2(1 +9)

a
2 .
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ksta—4 N-1

ks +a—2 2 T2
g — s __9g _ 9 R?
p(1+g|y,Xs,M5) - 2 Fy (N2_1’ 1, ks;a,RE) (1 1+g> (1 1+gRs) (4)

The kernel of the shrinkage factor’s posterior distribution mimics the expression for marginal model
likelihood (1).'® Tt thus skews the posterior density towards values close to one as the parameters N
or R?q increase. In contrast, the shrinkage factor density concentrates closer to zero with increasing
parameter size ks or the hyperparameter a. In other words, the posterior density adapts to a
model’s marginal likelihood, rewarding good fit with increasing the shrinkage factor towards one
(i.e., emulating maximum -likelihood estimates), while punishing parameter size with shrinking
posterior estimates towards zero. In this sense, the posterior density of ly, Xs, My follows a
behavior similar to information criteria or the OLS F-statistic.

g
T+g

The integration constant of (4) is a Gaussian hypergeometric function, which consequently also
turns up in the expression for marginal likelihood of model M; (cf. Liang et al., 2008, equation

(17)):

N—-1

Pyl Xs, M) o< (§'5)” 2

mracz 2F (Fg 1A ) (5)

While this expression differs from the expression for marginal likelihood under fixed g (1), it displays
similar behaviour with respect to parameters. Its partial derivatives with respect to parameters
correspond to the ones in (1). Building on equation (5), Liang et al. (2008, equation (19)) proceed

by expressing the posterior expected value of the shrinkage factor E ( y, Xs, M 5> as a ratio of

_9
1+g
two hypergeometric functions. The expression is primarily relevant for the expected value of the

response: 19

E(y|X,, My) = 1B (0l X, My) + B (125 |y, X, M) X5, (6)

with S, denoting the estimated OLS coefficient for model M. Equation (6) highlights the impor-

tance of the shrinkage factor, as the hyper-g prior allows for model-specific, data-adaptive shrinkage
as opposed to fixing the value for the shrinkage factor a priori.

The posterior statistics outlined so far suffice for the analysis in Liang et al. (2008). However, fully
Bayesian inference requires several more expressions, notably with respect to second moments.
Therefore, we introduce in equations (7)-(A.2) the moments of the shrinkage factor and the coeffi-
cients, as well as the posterior distribution of coefficients (For completeness, the posterior predictive
distribution is provided in the appendix). Note that straightforward integration characterizes all
of these posterior moments as fractions of differing hypergeometric functions. However, they may
all be expressed as functions of a single scalar F; = gFl(%, 1, ks; ¢ R?) using Gauss’ relations
for contiguous hypergeometric functions (Abramowitz and Stegun, 1972, p.563). Let N = N — 3
and 0, = k, + a — 2 represent collected terms. Tedious, but straightforward algebra then yields the

following results for posterior moments (as long as R2 € (0,1)):2°

!8Note that due to this feature, the mode of density (4) is the local Empirical Bayes prior (EBL) from section 4.2.
19Note that E (8sy, Xs, Ms) = E (ﬁ v, XS,MS) Ba.
2Tn case R? = 0 (in particular for the null model), the respective quantities are E (ﬁ

COV(55|y’XS7MS): 2 M(X’X)71

ks+a N-2

2
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Note that the equations above all contain the term 6,/F}.2! So for each model’s statistics, a hy-
pergeometric function (or its Laplace approximation) has to be computed only once, which benefits
numerical implementation in terms of computational burden.?? In the BMA implementation used
in the next section, the speed loss of hyper-g vs. a fixed-g setting is around 30%. Similarly cumber-
some algebra also establishes the higher moments of the shrinkage factor and the moments of the
predictive distribution as simple transformations of f/F. Section A.1 in the appendix presents
these terms for reference, as well as a closed-form expression for the posterior coefficient density.

4.2 Properties of the hyper-g prior

The hyperparameter a can be trimmed to capture prior beliefs on the shrinkage factor in the
associated Beta distribution. It is straightforward, for instance, to specify the prior beliefs such
that the expected shrinkage factor matches the expressions of popular fixed g priors. In general,
most popular settings for g can thus be emulated by a = 2 + 2/w(N), with w(N) > 0, w'(N) > 0
and limy_, o w(IN) = oo, thus positioning the prior expected value at E(lf%g) = % Setting
a in dependence of sample size has the appealing virtue of ensuring ’consistency’ in the sense of
Fernéndez et al. (2001a, p.6).2> By the same mechanism as in the corresponding fixed settings,
the weight of the prior vanishes with increasing sample size and thus lets the posterior probability
of a ’true’ model p(Mrp|y) tend to to unity. Note that this applies to any true model; a proof is
provided in section A.2 in the appendix.

In this light, we concentrate on the following specifications for adaptive shrinkage priors:

e HG-UIP: a= 2—1—% corresponds to the ’g-UIP’-shrinkage factor with E(ﬁ) = HLN Then

95% of the prior mass on the shrinkage factor is contained in the interval [1 — 0.95"1].

e HG-RIC: a= 2+% corresponds to 'g-RIC’-shrinkage with E(ﬁ) = % In this case 95%
of the prior mass is contained in the interval [1 —0.95%° 1]. Akin to Ferndndez et al. (2001a),
such a setting will be asymptotically consistent by choosing w(N) = max (N, K?).

e Empirical Bayes — Local (EBL): gs = arg max, p(y|Ms, X, g). Authors such as George and
Foster (2000) or Hansen and Yu (2001) advocate an 'Empirical Bayes’ approach by using

2INote that 0, /F7 is just 2/(a — 2) times the integration constant of p(gly, Xs, Ms) or 0,/ F
BF (M, : My) is the null-based Bayes Factor for model M.

22Note that with respect to equations (7) and (A.1) it is straightforward to derive the corresponding expressions for
E(gly, Xs, Ms) and E(g*|y, Xs, Ms). However, E(g|y, Xs, Ms) will only be finite for ks + a > 4 and E(¢°|y, Xs, M)
only for ks + a > 6. We therefore concentrate on the posterior moments of the shrinkage factor.

23Consistency does not directly apply to the g-RIC prior outlined below. However, throughout the following
sections, g-RIC is in practice identical with the g-BRIC prior (as always K2 > N). Since the latter qualifies for
consistency, the notion may be extended to g-RIC, at least in our case.

— a—2
= BF(M,: M) where
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information contained in the data (y, X) to elicit g. The latter provide a theoretical under-
pinning for doing so locally, i.e. separately for each model. In the formulation given in Liang
et al. (2008), this corresponds to gs = max(0, Fs — 1) where Fj is the standard F-statistic for

2(N_1—
My, with Fg = %é)k’zs). Note that this formulation frequently raises objections, since it is

not necessarily consistent and the data-dependency of g runs counter the intuition of a prior.

Similarly, other specifications akin to ’classic’ g formulations could be implemented — as long as
they depend on N as defined above, in order to retain asymptotic consistency. Henceforth, we will
refer to such elicited hyper-g priors as ’consistent hyper-g priors’. However, as posterior expressions
are quite insensitive to the value of a, and most of these formulations will lead to a close to 2, the
resulting posterior statistics will be virtually identical. We therefore limit our attention to the two
specifications above.

Equations (7)-(8) reveal a certain resemblance to the respective posterior statistics under the "Em-
pirical Bayes - Local’ (EBL) approach, whose posterior statistics depend on the OLS F-statistic.
This feature is not surprising, as many Bayesian posterior statistics under a well-defined, non-
degenerate prior asymptotically converge to their maximum-likelihood equivalent. Section A.3 in
the appendix shows that also the posterior model probabilities under EBL and consistent hyper-g
priors (5) converge asymptotically, given that the ’true’ model is not the null model (with zero
covariates). But the similarities between EBL and hyper-g priors also extend to small samples:
The main difference between their posterior expressions is the term 6,/F}, which guarantees non-
negativity for the hyper-g statistics. Considering that the models associated with very low 0,/ F}
(and thus high PMP) are disproportionally weighted into model averaging, this term thus virtu-
ally disappears from model-averaged statistics, if the data is not completely dominated by noise.?*
Consequently, the posterior statistics under both types of flexible priors will be very similar under
any sample with a decent signal-to-noise ratio. However, compared to hyper-g, the EBL setting has
two major drawbacks: First, it is not a prior in the classical sense, as it draws on the dependent
variable. Second, it cannot be established whether the EBL setting is consistent if the true model
is the null model. Nonetheless, due to its computational simplicity, the EBL prior can serve as a
reasonable approximation to (and shares its asymptotic properties with) the hyper-g prior under
data with a small noise component.

In view of the resemblance between the hyper-g prior results and the OLS- F-statistic, the posterior

distribution of the shrinkage factor l%;g could be interpreted in terms of goodness-of-fit: Equation

(7) presents its model-specific expected value as close to 1 — 1/ F s, Where F, represents an adjusted

OLS F-statistic for the model M: F, = %. Larger values of the shrinkage factor hence
correspond to more variance explained by the model M s- The model-averaged expected value of
the shrinkage factor E(l’fg\y,X ) may be interpreted likewise. If K +a < N + 1,the following
inequality will hold asymptotically under a consistent hyper-g prior as N tends to infinity — in

small samples, it will hold as well except in cases of very low data quality (cf. section A.4).

— 2 V — 0 2
U pbln X _ (N0 R

- E(L |y, X) i 1-R2

%X>:ﬂﬂ%m (9)

The model-weighted average of adjusted F-statistics thus establishes an upper bound for the pos-
terior shrinkage factor. Consequently, the shrinkage factor can be related to goodness-of-fit in the
data (y, X). The term involving the probability of the null model p(Mp|y, X) is necessary, since

2“Note that gFl(%, 1, k'*;“ , R2) increases rapidly as R? increases. The term 0, /F could thus noticeably affect

model-averaged posterior moments only in case the data examined offers a very low signal-to-noise ratio.
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the F-statistic of a model M, will in general move in line with E(;[y, X, M), except in case of

the null model (there, the posterior conforms to the prior %)

A similar argumentation allows for relating posterior shrinkage to the F-statistic of the full data
sample: If N — oo under a consistent hyper-g prior, then the F-statistic of the full model with
K regressors will form an upper bound for a function of posterior shrinkage (inequality (10)).
Note that this inequality will also hold in small samples as long as there are some posterior model
probabilities considerably larger than the one of the null model.?®

1 < R% (N -Ekly,X)—a-1)
1-E(ily, X) ~ A -RE)  (E(kly, X) +a—2)

(10)

Here, pr denotes the OLS R-squared of the full model, and E(k|y, X) is the expected posterior
model size. The right-hand side thus constitutes an adjusted F-statistic that relates R% with
‘effective parameter size’ E(k|y, X) + a — 2. Note that this adjusted F-statistic is (almost sure)
larger than the F-statistic of the full model, which illustrates the estimation advantage of shrinkage
methods versus OLS. It is thus straightforward to express shrinkage as a function bounded by
the unadjusted OLS F-statistic, which allows for applying likelihood-ratio significance tests in a
classic sense. The relationship between the F-test and and information criteria thus implies that
the posterior expected shrinkage factor is an indicator for goodness-of-fit of the model average that
behaves similar to information criteria.

5 A simulation exercise

In this section we carry out a simulation study that empirically investigates the supermodel effect
and assesses the predictive performance of selected prior structures. We group this broadly into
fized prior settings, as discussed in section 2, as opposed to model-specific adaptive flexible g priors
(as in section 4.1). In the following, we concentrate on the 8 prior structures given in Table 1.

Fixed Prior Settings

g-RIC Risk inflation criterion, ¢ = K?.
g-UIP Unit information prior, g = N.
g—E(l’fg]y) ﬁ is set to the posterior mean under the HG-4 prior (i.e. E(ﬁ]y)).

Flexible Prior Settings

EBL Local empirical Bayes estimate of g.
HG-3 Hyper-g prior with a = 3.
HG-4 Hyper-g prior with a = 4.

HG-RIC Hyper-g prior with a = 2 +2/K?2.
HG-UIP Hyper-g prior with a =2+ 2/N.

Table 1: Definition of Prior Settings.

The first two fixed settings correspond to what Fernandez et al. (2001a) coined the ’benchmark’

25Even though this inequality will hold in virtually all relevant cases for small samples, it may not hold in case

the dependent-covariate correlation is less than expected under a null hypothesis of no relation. As a rule of thumb,

R% > Kﬁif? is sufficient for (10) to hold in any case. Please refer to section A.4 in the appendix for further details.
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prior and is widely used in applied work.?® In macroeconomic studies such as (e.g., Ferndndez et al.,
2001b), their recommendation usually results in the g-RIC prior. The implied (large) value for g
under g-RIC is expected to have two consequences: first g-RIC will favor parsimonious models, and
second posterior mass will be concentrated on a small set of models.?” The unit information prior
and the g—E(%g|y) complete the set up for fixed prior structures on g. For the latter we impose
7%, a priori to equate the (model weighted) posterior mean of (1¥;]y) under the HG-4 setting (the
hyperprior with a = 4). We have chosen this particular prior structure to exemplify the impact of
adaptive shrinkage: both the HG-4 and g—E(ﬁLy) priors share the same average shrinkage factor
and thus should yield a similar posterior model size distribution. However, posterior results are
expected to seriously differ regarding the relative concentration of PMPs. In keeping ¢ constant,
the g—E(l’fgLy) setting will favor models which have a comparably small posterior support under
the HG-4 prior. The differing results between g—E(l%g\y) and HG-4 thus illustrate the impact of
model-specific shrinkage as opposed to adapting the aggregate shrinkage factor to the data.

The flexible prior structures with model specific, data-dependent shrinkage divide into local em-
pirical Bayes (EBL) estimates and the hyper-g prior corresponding to a fully Bayesian approach.
One strength in placing a prior on g lies in the fact that we can incorporate our prior beliefs fol-
lowing the rules of Bayesian statistics®® via the hyperparameter a. For the simulation study, we
devise four different values for a: HG-3 (a=3) corresponds to a prior expected shrinkage factor of
%, whereas HG-4 (a=4) corresponds to a flat prior over the shrinkage factor. We contrast these two
settings with two consistent priors that are calibrated to match the g-RIC and g-UIP prior structure
(HG-RIC, HG-UIP). Le., the prior expected value of the shrinkage factor F (ﬁ) conforms to the

shrinkage factors induced by g-RIC (g = K?) or g-UIP (g = N).

Data-wise, we employ two different settings, where the first set-up A’ follows Ferndndez et al.
(2001a). Each Monte Carlo run draws ten potential explanatory variables (x1,...,Xj0) with N =
100 observations from a standard normal distribution for each covariate. Five more variables are
generated by multiplying the first five regressors with the vector (0.3,0.5,0.7,0.9,1.1) in order to
induce a correlation structure among the covariates. Note that this correlation structure hampers
uncovering the data-generating model under short samples.

The second set-up 'B’ is more demanding since the data-generating process cannot be traced back
to a single model. This is more in line with the Bayesian model averaging approach, whose question
is not whether the preferred model is perfectly true, but whether under the assumed model(s) the
observed data is a plausible outcome.?? The data-generating process is composed of five partially
nested models with unequal model weights imposed. This creates a "hierarchy’ of models, with y,
and y5 dominating the remaining models in terms of explained variation.3°

Posterior inference under the different prior structures will be examined with varying signal-to-noise
ratios. In particular we conduct the simulation study for four levels of noise:3! 0 =1/2,0 = 1,0 =
2.5,0 = 5. For each value of o and each setting, results are computed as averages from 50 Monte
Carlo draws. The relatively low number of covariates K = 15 allows for easily enumerating the full

268ee, for instance, Fernandez et al. (2001b), Masanjala and Papageorgiou (2008) as well as Koop and Potter
(2003).

2TNote that this feature facilitates quick convergence of stochastic search algorithms such as the MC® to the target
distribution.

28Gee Laud and Ibrahim (1995) for a model selection approach designing information criteria that allow for the
input of prior knowledge.

298ee, for instance, Gelman et al. (1995).

3%Note that setup 'B’ is observationally equivalent to generating data from a single, complicated model.

31Note that in this setting, varying o has an effect that is similar to varying the number of observations N. We
therefore leave N constant.
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Setup "A’: y =44 2x; — x5 + 1.5x7 + x11 + 0.5x13 + 0¢

Setup ‘B’ y = 0.2y; + 0.1y + 0.1ys + 0.3y4 + 0.3y5
y1 =4+ 2x; — x5 + 1.5x7 + x11 + 0.5x13 + o¢
yo = 4+ 4x1 — x5 + 1.5x9 + xg + 0.5x11 + 0¢
ys =4+ 1x5 — x7 + 1.5x3 + x9 + 0.5%x¢ + o€
ys =4+ 2x1 — x9 + 1.5x4 + x7 + 0.5%x¢ + 0¢€
ys = 4+ 2x7 — x10 + 1.5%11 + x12 + 0.5X13 — 2Xx14 + 0¢

model space of 25 models. This guarantees that the differences of results for the competing priors
do not arise from variation due to stochastic search.

Empirical research frequently focuses on the posterior inclusion probabilities (PIPs) of the variables
entering the analysis and the posterior moments of the related coefficients. Table 2 and 3 highlight
PIPs for setting ’A’: Under a small degree of noise (0 = 1/2 and o = 1) results do not differ
considerably between fixed and data-dependent priors for g. Under the o = 2.5 setting, the PIPs
of the coefficients from the the data-generating model exhibit differences in magnitude but still
lead to the same interpretation. Results change when looking at the ¢ = 5 case. Posterior mass
under the flexible priors is spread more evenly than under fixed g priors. The g-RIC prior shows
strong support for the first variable, with a large PIP for 8y of approximately 0.8. The remaining
variables receive negligible posterior support, tempting the researcher to believe that the data-
generating process is solely driven by the first variable. In contrast, flexible priors still ’identify’
all variables. As expected, mass is spread more evenly, and over larger models,? which results in
a high share of covariates with PIP close to 0.5 and thus reflects the serious degree of noise in the
data. Note, however, that under high noise, the g—E(ﬁLy) prior (which is data-adaptive but not
model-specific) is more prone to misidentifying variables (by PIP) than the hyper-g priors. This
result suggests that while adapting shrinkage to data quality is crucial, it is also important to allow
for model-specific adjustment of the shrinkage factor.

In addition to PIPs, the posterior model probability of the data-generating model can be of interest
to examine consistency properties in the sense of Ferndndez et al. (2001a). Tables 6 and 7 show
summary statistics for its posterior model probability (under setting ’A’). In line with asymptotic
consistency, more information in the data leads the hyperprior to uncover the data-generating
process with highest precision, whereas increasing noise deteriorates the selection ability of BMA
for all settings. The ratio of the posterior model probability for the data-generating process to the
one with highest PMP is given in Table 7. The results show that in situations described by higher
degrees of noise in the data all specifications favor a model different from the one generating the
data.

While flexible priors fail to uncover the data-generating model (as do the fixed priors) the assigned
PMP for the best (and wrong) model is considerably smaller than under fixed priors. Hence,
the degree of uncertainty is reflected in the evenness of posterior mass distribution. Figures 2
and 3 exemplify the differences in PMP concentration for the 8 priors. The first figure shows
the cumulative posterior mass of the 100 best models under the four signal-to-noise settings. From
these figures and Table 6, it becomes evident that flexible priors uncover the data-generating model
with highest precision and concentrate most mass on this model(s) in situations characterized by
a high degree of information in the data. This means that under the flexible priors, posterior

32Note that the sum of PIPs equals posterior model size. Therefore, if posterior mass concentrates on larger
models due to noise, the PIPs will not discriminate much among covariates but will exhibit high absolute values. It
is therefore more insightful to compare the relative differences in PIPs rather than their absolute values.
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expected shrinkage E(lf%g\y, X) is larger than the constant factors 1%9 under the fixed priors. As
noise increases, the flexible priors distribute mass more evenly among explanatory variables which
reflects the rise in uncertainty. In contrast, fixed g priors are not capable of adjusting posterior mass
distribution to uncertainty inherent in the data. This inability to adapt limits the merits of Bayesian
model averaging under fixed g priors with respect to robust inference and predictive ability. Figure
3 uses a QQ-plot to compare for PMPs under the various prior settings with the g-RIC prior. For

all data-dependent priors, differences to fixed priors increase with noise as expected.??

Under setting 'B’, the employed models should rather be understood as approximations, while
uncovering a ’true’ model is of minor importance. The results exemplify once again the supermodel
effect behavior of fixed prior settings illustrated in Figures 4 and 5. Small degrees of noise trigger
a concentration of posterior mass under the hyper-g prior and the empirical Bayes approach. An
increase in noise is reflected in a wider spread of posterior mass among models under flexible
priors, whereas fixed priors still concentrate on a small number of models. Moreover, note how
close the hyper-g results are to the Empirical Bayes prior under both settings A’ and ’B’, which are
particularly striking when noise is small. This illustrates that both concepts are not only related
asymptotically, but also lead to similar conclusions under small samples (that are characterized by
a noise component that is not too large).

Finally, we examine the robustness of the various g-prior settings via their performance in out-of-
sample prediction. Results from a prediction exercise are expected to vary considerably between
fixed and flexible prior settings, since the latter incorporate data adaptive shrinkage. Akin to Liang
et al. (2008) we randomly split the data from settings A’ and "B’ into 70 estimation and 30 out-of-
sample observations. We then calculate the root mean squared error (RMSE) of the forecasts for the
30 out-of-sample data points, averaged over 50 Monte Carlo steps. The RMSE statistics shown in
Table 8 are normalized with respect to forecasting results under the g-RIC prior. Thus values below
1 indicate better predictive accuracy of the respective prior structure than under the g-RIC prior.
The top panel of Table 8 shows mixed results for setting "A’. As expected, the g-RIC prior with its
focus on parsimonious models excels in nearly all signal-to-noise settings, concentrating on a single
(and luckily the correct data-generating) model. In the o = 1/2 case, however, the flexible priors
concentrate mass even more tightly than does the g-RIC and consequently yield better predictions
in terms of RMSE. At intermediate noise levels, g-RIC outperforms the other priors by greater
margins by exploiting the comparative advantage that the data-generating process is composed
of a single model. This shows how the supermodel effect could be exploited to achieve superior
predictive performance under the following conditions: If a researcher has prior knowledge that
the data is generated by a simple model with few covariates, and if the noise component is neither
too weak such that flexible priors would outperform any fixed priors, nor too strong such that a
fixed prior setting would hardly identify the one ’true’ model as the best-performing one, then a
high g-parameter will concentrate more mass on the ’correct’ model than flexible prior settings. In
view of this conditions, the supermodel effect can be exploited best in a typical simulation set-up.
However, such an approach can be dangerous under more complex datasets, and in any case when
such peculiar prior knowledge is not given. Simulation setting 'B’ illustrates the merits of flexible
priors when the lack of ideal conditions turns the supermodel effect into a disadvantage for fixed
g-priors: The predictive performance of flexible priors dominates throughout nearly all signal-to-
noise settings. Especially the HG-3 prior and the empirical Bayes approach demonstrate superior
predictive abilities with the latter one outperforming the g-RIC prior for all signal-to-noise setups.
This contrasts with typical simulation exercises in the literature, as their data-generating processes
emanates from a parsimonious single models, which plays in favor of (large) fixed priors because of
the supermodel effect. Given their focus on large models, it is surprising how well hyper-g priors

33We have omitted results from the HG-3 setting, since results are very similar to that of HG-4.
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perform in this prediction exercise. The results suggest that imposing a model prior that favors
parsimonious models yields even better predictive performance under a flexible prior.3*

6 (Un)stable growth determinants

Emanating from the pioneering work of Sala-i-Martin et al. (2004),% numerous studies have em-
ployed model averaging techniques in the empirics of economic growth. For comparability, we
follow this approach and investigate the effect of the prior settings from section 5 on inference in a
cross-country growth data set. A vast part of the empirical studies use international income data
provided by the Penn World Tables (PWT). This data base publishes GDP data adjusted for pur-
chasing power parities (PPP), which is essential for conducting country comparison studies. The
core purpose of the PWT is collecting prices for the same or similar goods in different countries.
Gathering prices is carried out on an irregular basis with each ’generation’ of the table complying
with a different round of price collection (Johnson et al., 2009). The methodologies employed by
PWT to derive PPP-adjusted GDP data - and in particular growth rates thereof - have been fre-
quently criticized as being plagued by considerable measurement error. Johnson et al. (2009) carry
out a replication exercise by re-estimating selected growth equations employed in the literature us-
ing different versions of PWT. They show that estimates vary markedly across different versions of
the PWT. In particular, growth studies using high frequency data (e.g. annual as opposed to long
run averages) are especially prone to the measurement error inherent to the PWT methodology.
Johnson et al. (2009) conclude that in order to make significant policy conclusions empirical results
should be robust to PW'T revisions.

Ciccone and Jarocinski (2010) investigated the impact of PWT revisions on Bayesian model aver-
aging results. They use three different versions of the Penn World Table income data (PWT 6.0,
PWT 6.1 and PWT 6.2) and show that the identification of 'robust’ determinants - as measured
by the respective PIP - varies tremendously among data revisions. Feldkircher and Zeugner (2012)
argue that this instability is partially rooted in the prior setup chosen by Ciccone and Jarocinski
(2010): a uniform prior on the model space is coupled with the g-RIC prior, with the latter being
characterized by the ’supermodel effect’.

In what follows we build on this example and estimate cross-country growth regressions for an
extended set of four PW'T revisions:

Ay = a4 vy + B Xs + ¢, (11)

Here, Ay’ denotes the average annual growth of income per capita over the period from 1960 to
1996 for N = 75 countries, « the intercept, € the error term, and X = (x1...X,) a matrix whose
columns represent a subset s of explanatory variables. Initial income is denoted by y? and is the only
explanatory variable that changes with PWT vintages. The potential growth determinants (whose
combinations are represented by Xj) are the ones originally put forward in Sala-i-Martin et al.
(2004) and employed in Ciccone and Jarocinski (2010). These 66 variables comprise measures for
factor accumulation and convergence (as implied by the Solow growth model), human capital, insti-
tutional environment, and socio-geographical determinants. The estimation is carried out for each of
the four considered PWT revisions, indexed by j € {PWT 6.0,PWT 6.1, PWT 6.2 and PWT 6.3}.
Note that all of them stem from the same PWT generation and are thus based on the same raw

34Tentative results available from the authors on request.
35Gee also Crespo Cuaresma and Doppelhofer (2007) and Sala-i-Martin (1997) for traditional approaches to model
averaging as opposed to Ferndndez et al. (2001b) and Eicher et al. (2011) for Bayesian strategies.
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price data. In this setting, we examine the effect of small perturbations to income data on posterior
results under different g priors. The correlation of the dependent variable between vintages ranges
from 0.92 to 0.97 and thus the revisions can be considered as reasonably small perturbations. In
order to represent loose prior expectations about model size, all estimations are based on the Ley
and Steel (2009) binomial-beta model prior anchored at an expected model size of K /2 variables.?6

We compare the stability of the posterior inclusion probabilities over revisions by the ratio of
maximum over minimum PIP for a variable: Max/Min, = max(PIP(X}]))/min(PIP(X})), with
k=1,...,67and j =1,...,4 denoting the four PWT data sets. Note that for all PWT vintages,
the g-RIC prior complies with the ’benchmark’ prior put forward in Ferndndez et al. (2001a).
Moreover, note that in Ciccone and Jarocinski (2010) the country sample - and thus the number
of observations - changes from revision to revision. Feldkircher and Zeugner (2012) show that
conditioning on the same observations throughout the revisions reduces the instability of posterior
results. We therefore opt for holding samples constant since we are interested in the part of PIP
instability that is caused by employing the fixed g-RIC prior (the benchmark prior). Table 10
summarizes the results. Employing a flexible prior decreases PIP variation to a great extent,
regardless of which PWT vintages are considered: The overall Max/Min ratios under a flexible
prior are 67% smaller than under the fixed g-RIC prior.

This suggests that posterior results of the fixed and flexible priors will also differ considerably in
qualitative terms. To further examine the robustness of growth determinants, Table 11 lists the
posterior inclusion probabilities per variable under the g-RIC and the hyper-g (UIP) prior for all
four PWT vintages. Explanatory variables are labeled 'robust’ when they exceed a PIP of 0.50.
This threshold can be motivated from a predictive stance (Barbieri and Berger, 2003) as well as
from an intuitive perspective. Under the g-RIC prior, only a proxy for human capital (primary
schooling in 1960) can be considered as robust in all four PWT vintages. Results are unstable
for regional dummy variables such as a dummy for East Asia, Tropical Area, and Latin America.
Moreover, no clear-cut results emerge on the effect of initial GDP on international differences in
income. This is particularly worrisome from the viewpoint of economic theory and casts doubts
on the results under the g-RIC setting. The hyper-g (UIP) prior, in contrast, identifies several
variables as robust. Both initial GDP and primary schooling display impressive posterior support
(PIP > 90%) and their posterior coefficients are well in line with economic theory.?” Furthermore,
the regional dummy for Africa, and variables for the share of Confucian population receive robust
posterior support over all PWT revisions, which provides strong empirical evidence in the vein of
Johnson et al. (2009). Finally, the proxies for fertility and for Buddhism show considerable posterior
support in three out of the four PWT vintages. The robustness of regional dummy variables points
to heterogeneous growth dynamics in the examined country set.

The difference in posterior results between flexible and fixed priors is rooted in how posterior
mass is distributed among covariates and models. For the PWT data set, this can be seen best
when comparing the posterior expected model size. While a model for economic growth should
be expected to contain 3 to 5 explanatory variables according to the g-RIC prior, the posterior
model size for flexible priors lies in the range of 12 to 14 regressors. Accordingly, the corresponding
shrinkage factors of the flexible priors are considerably lower (across all revisions) than the value
implied by the fixed g-RIC prior (see the bottom of Table 11). These differences become even more
striking when considering the implied posterior mean for g, which is 4448 under the g-RIC compared
to 23 - 26 under the hyper-g (UIP) prior. The smaller shrinkage factors (and implied values for
g) under the flexible priors indicate noise to prevail more strongly under PWT data sets than

36Note that Ciccone and Jarociriski (2010) have used a uniform prior on the model space. Results under the uniform
prior are available from the authors upon request. See also Feldkircher and Zeugner (2012).
3TResults are available from the authors upon request.
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inherently assumed under g-RIC. With that in mind, it comes as no surprise that the flexible priors
push the PIPs of most variables towards the 50% threshold, which points to empirical evidence
neither in favor nor against their inclusion in models of economic growth. The inconclusiveness
that plagues the empirical growth literature is thus more correctly mirrored in the posterior results
of the flexible priors, whereas the benchmark prior is prone to the risk of over-fitting the PWT
data sets.

Figure 6 (upper left panel) illustrates the problems arising from fixed g priors in the (PWT 6.1)
data set. The concentration of posterior model probabilities under flexible priors is considerably
lower than under the g-UIP setting, and is far less than under the g-RIC setting. In view of
the discussion in section 3, this points to the supermodel effect severely affecting the posterior
statistics in this popular data set. This characteristic is also mirrored in the corresponding posterior
inclusion probabilities (Figure 6, upper right panel). Under fixed-g settings (particularly g-RIC),
the PIPs are more skewed than under flexible priors, which again illustrates that fixed-g priors
risk discriminating more among covariates than seems justified by the data at hand. Moreover,
figure 6 displays virtually identical results for the various hyper-g settings, which illustrates the
feature that their differing prior expectations do not have too much impact on posterior statistics.
Finally, their results are indistinguishable from the Empirical Bayes prior, which further illustrates
how quickly hyper-g and EBL prior results converge in small samples.

The above results illustrate the advantages of flexible g priors in BMA inference. However, it
is not clear whether these advantages carry over to robustness in predictive performance: On
the one hand, the instability of of fixed priors such as the g-RIC and g-UIP should deteriorate
forecast performance. On the other hand, it is a stylized fact in the forecasting literature that
parsimonious models outperform saturated models in terms of forecasting quality. It is thus not
clear a priori which prior setting excels in forecasting economic growth. We therefore conduct
a forecast evaluation in which we randomly split the observations into a training sample of 56
countries and a ’hold-out’ sample of 19 countries. The training sample is used to estimate the
models for forecasting the remaining observations of the hold-out sample. The corresponding root
mean square error (RMSE) is calculated over 30 random sample splits. Table 8 summarizes the
results: All flexible prior settings outperform the fixed priors g-RIC and g-UIP. In particular, the
predictive performance of the hyper-g (UIP) prior is superior to the other priors in most of the
PWT revisions.

Finally, note that the posterior expected shrinkage factor, an indicator for goodness-of-fit, did not
steadily increase from PWT 6.0 to PWT 6.3. We notice that goodness-of-fit and data quality need
not to go hand in hand.?® However, we think a goodness-of-fit measure might be a reasonable
indicator to get a first impression about how the data revision progressed. The sharp drop of the
shrinkage factor from PWT 6.1 to PWT 6.2 might further stimulate the debate whether newer is
always better in the context of PWT revisions.?’

7 Concluding remarks

The widespread use of Zellner’s g prior in linear BMA rests on two convenient features: it provides
closed-form solutions and reduces the complexity of prior elicitation to the scalar g. Consequently,
theoretical considerations have mostly focused on the choice of g, in particular in view of its

38 An increase in goodness-of-fit might be driven by stronger correlation of measurement error in both, explanatory
variables and dependent variable.
39See also Johnson et al. (2009).
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virtues as a penalty term for model size. This study departs from earlier literature in bringing
forward two arguments that have been overlooked so far: First, model size considerations should
be disentangled from the primary purpose of g (which is scaling coefficient covariance) and rather
be fused into the formulation of model priors. The elicitation of g should thus not interfere with
prior desiderata on model size. Second, we demonstrate that fixing g to arbitrary values may have
unintended consequences on posterior model probabilities: The higher g, the more tightly posterior
mass will concentrate on the few best-performing ’supermodels’ — regardless of model sizes, number
of observations, or signal-to-noise ratios. Ultimately, a large value for g will favor a single model,
thereby emulating model selection rather than model averaging. As previous studies predominantly
have assessed BMA performance on simulated data generated by a single model, they tended to
favor g-specifications with large values of g that effectively select the right model. However, in
empirical practice a large g runs the risk of putting to much posterior weight on a single model.
We demonstrate that the popular prior suggested by Fernandez et al. (2001a) is particularly prone
to this behavior.

As it is virtually impossible to specify the 'right’ value for g under unknown variance, we propose
to put a prior distribution on this parameter instead: Such a hyperprior allows for data-adaptive
and model-specific shrinkage, thus adjusting the impact of prior beliefs to data quality. In dis-
criminating among models only as far as data quality allows, a prior on g thus offers a remedy for
the supermodel effect. In this manner, we focus on a particular hyper-g prior, whose formulation
offers three main advantages: First, it admits closed form solutions for almost any quantity of
interest, thereby facilitating implementation. Second, its hyperparameter allows for formulating
prior beliefs on coefficient variance, but without incurring the risk of unintended consequences
on posterior model mass. Third, we demonstrate that the hyper-g prior can be reconciled with
BMA consistency. We complement the existing literature on the hyper-g prior by providing addi-
tional posterior expressions that allow for fully Bayesian inference, as well as for sound numerical
implementation. Moreover, we demonstrate that its posterior statistics can be considered as a
goodness-of-fit indicator, and show why its results are closely related to those of the Empirical
Bayes g-prior.

A simulation exercise contrasts various formulations of fixed and hyper-g priors. The fixed g-priors
perform well when the data-generating process rests on a single model that is part of the candidate
model space — but so does the hyper-g prior. The virtues of flexible prior structures become
evident in more complex settings: Flexible priors outperform fixed g settings in terms of forecasting
accuracy and exhibit a more stable structure of posterior model and inclusion probabilities over
varying degrees of noise in the data.

The final section illustrates these conclusions by investigating fixed and flexible priors under dif-
ferent revisions of an economic growth data set. The results demonstrate that fixing g has a
detrimental effect on the stability of posterior results. While fixed g-priors list initial income
among the most unstable growth determinants, the estimates from the flexible priors are well in
line with economic theory: Both conditional income convergence and human capital are identified
as robustly related to income growth, along with a handful of regional dummies. In contrast to
fixed settings, these results are insensitive to data revisions. Concluding, the hyper-g prior offers a
sound, fully Bayesian approach that features the virtues of prior input and predictive gains without
incurring the risk of mis-specification.
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A Technical appendix

A.1 Posterior statistics of the hyper-g prior: Further results

Joining tedious algebra with Gauss’ contiguous relations for hypergeometric functions(Abramowitz
and Stegun, 1972, p.563) allows to establish important posterior expressions of the hyper-g prior in
closed form, on top of the ones provided in section 4.1. It is important to note that the posterior
moments of coefficients, the shrinkage factor, and the predictive distribution all arise as simple
transformations of the posterior model likelihood in equation (5). Their implementation thus bears
virtually no computational cost. The following equations present the most important posterior
statistics (keeping the notation from section 4.1). Equation (A.1l) expresses the posterior second
moment of the shrinkage factor if (R? € (0,1)):4°

o((4)

X (((N —2)R? — (0, +2)) Ii‘i + (NR2—6,)" — 2 (N(R?)? - §S)> (A1)
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1
y’XS’M> (2PN — ) (N — (3 +2))

In addition to posterior moments, the posterior distribution of coefficients fSq|y, M can also be
established in closed form, but as ratio of two hypergeometric functions:

p(BsL%X&Ms) = /(; p(/88|y7 X87M579)p(g‘y7X57M8)d9 =
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Note that this expression is of close, though not perfect resemblance to a hypergeometric function
distribution of type II.4' The first two moments of this distribution are provided in section 4.1.

Similar algebra also allows for simplifying the predictive distribution and yields its moments in
closed form: Consider using the data (X,y) to forecast the dependent variable g conditional on
'prediction’ covariates X. Let X be an N x k matrix, y be N x 1, while § is [ x 1 and X [ x k. The
posterior predictive distribution of g is then given as a a multlvarlate t-distribution of dimension [
(Eklund and Karlsson, 2007, equation (A.15))%2

Q|X7X79797Ms Ntl(g—i_SX/B EvN_ 1)

where ¥ = (Il + SX(X/X)_IX,) Ny y (1— sR?)

2
40Tn case R2 = 0 (which relates in particular to the null model), the expression for (A.1) is E ((ﬁ)

y,XS7MS) =

8
(ks+a)(ks+a+2)

“1See Guptar and Nagar (2000) for the exact definition of the type IT hypergeometric distribution.

42The slight differences with respect to Eklund and Karlsson (2007) are due to the fact that we employ an improper
prior on beta variance o and the constant.
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Here, s denotes the shrinkage factor s = 1%, and R? the (centered) R-squared of y on X. 7 denotes
an N-dimensional vector whose elements are the arithmetic mean of y, and § = y — § the centered
response variable. Integrating the density function of Q[X , X, vy, g, Mg with respect to the shrinkage
factor yields the integrand of the following equation (after some rearrangement):

a—2 1
2 p(ylX)
. T (kta—2)(@) 7))
f(y|X7X7y7 MS) = 2 l * X
(F5t) w2 28
1 ~ -1 k+a—4
></ L+sX(X'X)7' X' *(1—5)" 2 x
0

x<g'g(1—sR§)+(y—y—sXB)' (1 +sX(xX'X)7X") (g)—y—sXﬂ)) " ds

To our knowledge, there is no closed-form solution to to the integral above, neither to its Laplace
approximation. We therefore recommend to resort to numerical integration. Nonetheless, it is
possible to obtain the predictive variance, i.e. the squared predictive standard error, as:
Var(gly, X, X, My) =XVar(Bly, Ms) X'+
y'y N—3)(1-R2 —
4 Yy NT—HII(( )( ) _k+a—2 /Fs*>

N-3 N—-1—k—a N—-1—a—k

A.2 Consistency of the hyper-g prior

Ferndndez et al. (2001a) define asymptotic ’consistency’ as follows: Consider that only Model Mj
is true, while all other models M; # M, are not true. Consistency then requires:

plim p(M;|y, Xs) =1 and plim p(Mjly, Xs) =0 VM, # M,

n—oo n—oo
Liang et al. (2008, Appendix B) have proven the above for the hyper-g prior except for the case

where the true model M, is the null model My. They stop short their proof because in this case
the Bayes factor B(M; : My) is (Liang et al., 2008, p.423):

p(Mjly, Xs) * _
R A

Moreover they state that if the above integral vanishes as N — oo, then consistency is ensured.
Applying the hyper-g setting transforms the right-hand side in (A.3) into the following (by a > 2):

e kj a—2 (! kjta a—2
1+9)" 2 plg)dg = l+g) 7 dg= ——
/0 (L+9)"2 plg)dg = —; /0( +9)" "7 dg a2

N"&?

p(9)dg (A.3)

Ifa =24w(N) with w(N) >0 and lim w(N) = 0, then the integral vanishes and thus concludes

N—o0

the proof.

A.3 Relationship between hyper-g and Empirical Bayes prior

It is well established in Bayesian statistics that under any non-degenerate prior, Bayesian regres-
sion results asymptotically approach their maximum-likelihood equivalent with increasing sample
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size. Against this backdrop it is not surprising that the results under the Empirical Bayes prior in
section 5 are close to the hyper-g settings. This sections outlines why posterior model probabilities
under consistent hyper-g priors and the Empirical Bayes are close in small samples and converge
asymptotically. As a byproduct, this section demonstrates the asymptotic consistency of the Em-
pirical Bayes prior if the ’ true’ model is not the null model. The results in this section are based
on Laplace approximations*?, cf. Gelfand and Dey (1994) for their asymptotic properties in the
context of Bayesian model selection.

Consider the familiar form of the Laplace approximation, where 0 is the maximizer of the inte-
grand’s logarithm h():

27

/@ (h(0)d0 = |7 exphd

Consider in turn the Bayes Factor for the hyper-g prior formulation as in (5), between a model
with k covariates, and the null model:

—2 [ —1-k—a -
BF, = / (149) " 77 (1+g(1 - B%)""T dg
0

Letting
h(g) =

yields the maximizer:

(N—=1—k—a)log(l+g)— (N —1)log(1+ (1 - R?)yg))

N |

R} (N —1—k—a)
(1-R?*)(k+a)
where ¢ = 0 if and only if k + a > R?(N — 1). Liang et al. (2008, p.421) note the similarity to the

local Empirical Bayes (EBL) estimator of g, but abstain from further investigating the issue.
The second derivative of h(g) is given as

1/ N-1-k-a (N —-1)(1 - R?)?
2< TEIE +<1+<1—Rz>g>2)

max( —1,0)

Q>
I

h'(g) =

The Bayes factor under a hyper-g prior is thus approximately equal to:
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2
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In case we have g > 0, then algebraic manipulation of the expression above yields:

N N -1 R2 N-l—k-a\ (1-R)(N -1 e
BFhN(a_2)ﬁ\/(N_1—k—a)(k+a)<(1—R2) k+a > (N—l—k—a)

Now consider the equivalent null-based model Bayes Factor for the EBL approach which is:

(WE)

MES

R N—-1—-Fk\~
1— R2 k

BFgpr = (

in case if k < R*(N — 1)

43Note that due to perceived numerical difficulties, Liang et al. (2008) propose the use of a Laplace approximation
for the posterior model likelihood under the hyper-g distribution (Liang et al. (2008, equation (17))). Depending
on the data, Laplace approximations can be prone to substantial numerical inaccuracies in small samples. However,
they may be useful for the purpose of this section which is mainly interested in asymptotic results.
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Therefore, if k +a < R*(N —1):

I N-1—k
(1-2) & =k N-1-k—a) 2
BF), ~ (a—2 \F\/ P —— a)< - N_lti_a> ()7 (W) BFepL

So if a — 2,4 the hyper-g Bayes Factor is approximately equivalent to an EBL Bayes factor times
a k-based model prior (that does not depend on R2?). Moreover, this model prior is bounded in a
relatively narrow range: Note that

k+a\? (N-1—k—a\ 2

- +a\? —1—k—a) 2

1 /2 < 1

aes (50) () s

The upper bound follows from Ishf, ]Eact that ((k + a)/k)F/? = (1 + %/%)g < exp(3). Similarly
(N—-1—-k—a)/(N—1—k)) 2 <exp(—%). Setting k = 1 and letting N —1 > k+a+1
performs the lower bound.*® The effect of the term in square roots actually counters the impact

of the latter term, as \/N 1 < \/(N i ]\k{ i)(kJm) <1 for k4+a < N — 1. The 'model prior’ thus

results in an upweighting of models with few or many coefficients, while intermediate model sizes are
downweighted (a feature very similar to the model prior of Ley and Steel (2009)). Since the model
prior does not depend on the level of N, it will lose importance as N — oo. In the limit, therefore,
both EBL and consistent hyper-g will approach the same Bayes Factors between any model except
the null model. If the true model is not the null model, then the posterior model probabilities under
EBL will therefore approach those under a consistent hyper-g — which establishes the asymptotic
consistency of the EBL prior in the sense of Ferndndez et al. (2001a), provided the true model is
not the null model.

Moreover, note that even in small samples, the impact of the k-based 'model prior’ is virtually
negligible with respect to the importance of BFgpy. Thus, at least as long as R2(N — 1) > k + a,
BF}, is quite close to BEFggr. And as long as the signal-to-noise ratio in the data is not too
small, BMA posterior statistics will be disproportionally based on models with large PMPs (i.e.,
models with (N — 1)R? > k+a). Any models with large differences between BF, and BFgp, will
thus hardly affect posterior model probabilities. Finally, note that in this case models with high
PMPs will display very hypergeometric terms F; > 1, which renders the posterior moments from
sectio 4.1 very close to their EBL equivalents. This effect explains why this paper’s results under
hyper-g and EBL are so close.

A.4 The shrinkage factor and goodness-of-fit

In order to demonstrate inequalities (9) and (10), consider a reformulation of the posterior expected
value of the shrinkage factor (7), where py is shorthand for posterior model probability p(M;|y, X)
of model M (and py denotes the PMP of the null model).*°

oK = 592 _
E(—2—|yx)= il i S A4
(i¥gx) - ”;presﬁp% A

S
where €= ZpsF*RQN 7

“Recall that any consistent hyper-g prior requires a — 2 for N — co.

“*Note that if k =0, BFeppr, = BF, = 1.

46Note that this formulation assumes RZ for all models other than the null model to be strictly larger than zero —
a notion we will follow throughout this section. However, the following inequalities can be easily generalized to the
case of R? = 0 as long as the the full model has R% > 0.
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Equation (A.4) can be transformed into the following:

_p2
1—E<ﬁ y,X)—{—e— po—ZpsliR) (A.5)

S

The € term is based on the expression 0s/F in (7), whose only role is to keep F (1%|X ,y) non-
negative in case of a ’bad’ model, whereas it rapidly vanishes for models with higher signal-to-noise
ratios. For any setting of the hyperparameter a, € vanishes as N — oo for fixed K as long as the
null model is not the single 'true’ model — but even in small samples, € tends rapidly towards zero
as data quality increases. Using a consistent hyper-g prior such as HG-UIP, ensures that e will
asymptotically vanish even when the true model is the null model, as in this case R? will vanish
with order of magnitude Or(N): Since F¥ > 1, the model-specific expression is bounded from
below while consistency will drive ps to zero.

Likewise, under a consistent prior the requirement that a — 2 as N — oo will induce the term
po(a — 2) to vanish asymptotically.

That said, in small samples with any viable signal-to-noise ratio, any models with very low PMP
will hardly affect posterior results, and hence the expression e will vanish as soon as there exist
some models with posterior model probabilities considerably larger than pg (which therefore must
have their F¥ > 1).

Omitting the expression ¢ — 2 po from (A.5) directly leads to inequality (9): Define F, = %,
then (9) follows from applylng Jensen’s inequality to (A.5).

A similar argument applies to the demonstration of inequality (10). As long as K +a < N 41, the
following will hold by Jensen’s inequality:

K§2p () 2 =2
s — = 2 — —
o T K (N - 6)

where Z _, ps denotes the model probability-weighted sum over all models except the null model.
Multiply with N and subtract (1 — pg) to obtain

K? o
—q pst
(1 — po)— 2=t Dabs

2o ps(N = 6)

Moreover, since any nested model’s R-squared R? cannot exceed the R-squared of the full model

R%, we have that RQS 2

K2
Zps(]ve 7 ) >
s=1

RQ E and therefore:

ZKjlpsés 1 _R%
=) = (1 —po) =
) ’ 25:21 pS(N_QS) R

Zps

Now note that Zﬁfl psfs = E(0ly, X) — po(a — 2). Consistency lets po(a — 2) rapidly vanish with

N — o0, which ensures that the right-hand side of this inequality is weakly larger than its version
_ 2 _

in expected value terms E(6;|y, X) = Zf:o psOs
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S pad, 1R} BBy, X) 1-R}

1 - ——— >
| pO)Zﬁflps(N—Hs) Ry~ E(N—0i|y.X) RE

This establishes an upper bound for the left-hand side of (A.5) (recall that N = N — 3 and
E(93|y, X) = E(k5|y7X) +ta— 2)

E(0|y,X) 1-R%
(N — 6]y, X) R%

E(l%g‘yx) —et <l

Under a consistent hyper-g prior, the term e — anzpo will vanish asymptotically as N — oo, which
establishes inequality (10). How close E (ﬁ ‘y, X ) comes to this upper bound is mainly determined
by the posterior variance of model size (the less variance, the closer), and by parsimoniousness of
the model priors.Note that the term e on the left-hand side might break the inequality (10) in
peculiar small samples. However, this term tends to be very small: Numerical simulations of a null
hypothesis with varying N, K, a and standard deviations have yielded no single instance in which
R% > % and E(ﬁ\y,X) larger than the right-hand side above. Therefore, if R% > %47,
then the e term can be safely omitted from the inequality above.

A.5 Proof of Proposition 1

Given (y, X), define log-likelihood of a model M, as £, = £log(1 — s) — &=L log(1 — sz,) where
§ = %—;—g is shorthand for the shrinkage factor, and z., denotes the R-squared of model M.,. Moreover,
index models according to their rank at a given s. Denoting the model the prior model probability

of model M, by m,, the PMP of the best » models is given as:

r 2K 11
PMP! = Zexp(li)mi/ Z exp(l;)m;
i=1 i=1

Let E,(0) denote the posterior average of a statistic 6; weighted according to r posterior model
probabilities:

En(0) = exp(l)mibi/ > exp(li)m;
=1 =1

Moreover, write the posterior average over all models as E(f) = E,x_1(#). Then, to prove proposi-
tion 1, it suffices to find the conditions under which the sign of the following derivative is positive:

dlog PM P} ol o
2P T _p ()=
ds "\ 0s ds
LEMMA 1 The posterior probability of the best model PMP; has a non-negative derivative with

respect to s if k* +n < E(k|ly, X), where E(k|y, X) represents posterior parameter size, and k* the
parameter size the best model; with n > 0 vanishing as N — 00, s — 00.

1"Note that this threshold is just slightly higher than the expected value of R% under the classic null hypothesis
of no significant variance explanation by a regression model. As a rule of thumb, if the standard F-statistic for the
full model is ’significant’ by at least 20%, then the inequality above is guaranteed to hold.
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dPMP
PROOF Let !

< 0, which implies

E(k) — k" < (N -1) <11__5Z; -k <11—_szz)>

The right-hand side could be positive or negative — although FE(k) > kx will in may cases be
associated with a positive right-hand side. However, for constant N and s — oo the right hand
side vanishes rapidly which already proves one part of lemma 1.

Now that since exp(£;)m} > exp(¢;)m; ¥V ¢ > r we have that

kr—k; m 2
— T
sz (1—s) W1 (22)~

1—s2z; — 1— sz,

-1 Vi>r (A.6)

dPMP1

Therefore, < 0 implies the following inequality:

E(k) — k* < (N — 1) <8(1_Sz) (E((l —s) N (mhywE 1)))

Whether the right-hand side is positive or negative, depends on the actual distribution of parameter
size k. Nonetheless, if N — oo under constant s, the N — 1 term in the exponent will dominate
the N — 1 factor in front, and the right-hand side will go to zero. Moreover, if s is a monotonically
increasing function of N, the right-hand side will vanish even more rapidly. Defining 1 as the
right-hand side of inequality (A.6) concludes the proof of lemma 1.

PROOF of proposition 1

Let be (N —1) (Er,l(ll:z ) — E(f::z)) be bounded by 7,_1. We will have dPMPT < 0 if and only

sz
if

B(k) — E.(k*) < (N — 1) (E <11__;;> —E (f:;)) (A7)

Denote posterior model probability of model M; by p; = exp(¢;)m;/ 22 + exp({j)m;. If 11:szzTT <
E,_1({=2), then the right hand side in (A.7) will be bounded by 7,1

If =2 > By (4=

1—szp

(V-1 <E’" (11_.92) b <11_;>) <= -s) %Kzélp" (1 —Ziszl- - 1Zr82r>

i=r+1

=) then the bound 7,_; will not hold necessarily, but:

sz

By inequality (A.6) the right hand-side is dominated by the right-hand side of the following in-
equality:

(N-1) (Er <11_—;> —E <11_—;>) < (N — 1)@ 2%51 pi <(1 - 3)%(%)% _ 1>

i=r+1

A similar argument as before is applied: if s — oo and/or N — oo, then the right-hand side will
vanish. In case this right-hand side is greater than 7,_1, 7, might be redefined appropriately.
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B Charts and Tables
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Figure 1: Illustration of the supermodel effect: sum of posterior model probabilities (PMP) for
the best 2000 models (by PMP) and posterior model size for the PWT 6.3 growth data set (see
section 6). Top panel shows results under uniform model priors. Bottom panel shows results under
model priors that neutralize the size penalty from the g-prior (cf. section 3).
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Figure 2: Cumulative posterior model probabilities for the best 100 models under Setting A. Top
panel corresponds to a noise level of o = 1/2 (left) and o0 = 1 (right). Bottom panel corresponds
to a ratio of o = 2.5 (left) and o = 5 (right).
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Figure 4: Cumulative posterior model probabilities for the best 100 models under Setting B. Top
panel corresponds to a noise level of o = 1/2 (left) and o0 = 1 (right). Bottom panel corresponds
to a ratio of o = 2.5 (left) and o = 5 (right).
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Figure 5: QQ-plot of cumulative posterior mass for different g-priors versus that of the g-RIC
setting (Setting B, based on 50 Monte Carlo draws).
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gRIC gUP gB(Lly FBEBL HG3 HG4 HGRIC HGUIP

Min. 0.1340 0.1279 0.1573 0.1888 0.1934 0.1809 _ 0.2006 0.2094

1 Mean | 0.4618 0.3725 0.5306 0.5951  0.5973 0.5758  0.6220 0.6217
7732 Max 0.6297  0.5106 0.7037 0.7669 0.7644 0.7461  0.7845 0.7843
St.Dev. | 0.1342 0.1019 0.1482 0.1551 0.1490 0.1487  0.1484 0.1484

Min. 0.0539  0.0317 0.0426 0.0308 0.0320 0.0289  0.0362 0.0362

s —1 Mean | 04433 0.3200 0.3922 0.3944  0.3932 0.3690  0.4219 0.4215
Max. 0.6115  0.4849 0.5578 0.5954  0.5922 0.5658  0.6220 0.6216

St.Dev. | 0.1373 0.1138 0.1283 0.1358  0.1342 0.1293  0.1392 0.1392

Min. 0.0021 _ 0.0022 0.0000 0.0000 0.0000 _0.0000 _ 0.0000 0.0000

5 —o95 Mean | 01201 0.1048 0.0556 0.0665 0.0660 0.0606  0.0721 0.0720
Max. 0.4609  0.3392 0.1493 0.1978 0.1968 0.1768  0.2216 0.2213

St.Dev. | 0.1133  0.0834 0.0387 0.0487 0.0478 0.0441  0.0524 0.0524

Min. 0.0000 _ 0.0000 0.0000 0.0000 0.0000 0.0000 _ 0.0000 0.0000

s —5 Mean | 00012 0.0023 0.0010 0.0025 0.0024 0.0021  0.0027  0.0028
Max. 0.0215  0.0324 0.0114 0.0323  0.0308 0.0254  0.0347 0.0347

St.Dev. | 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051  0.0067  0.0067

Table 6: Summary statistics of posterior model probabilities for true model based on setting 'A’
and 50 Monte Carlo Steps. Top panel corresponds to o = 1/2, second panel to o = 1, third panel
to o = 2.5, fourth panel to o = 5.

g-RIC  g-UIP  g-E( ﬁ ly) EBL HG-3 HG-4 HG-UIP HG-RIC

Min. 0.4752  0.6133 0.4704 0.5192 0.5386  0.5175 0.5695 0.5691

1 Mean 0.9806  0.9919 0.9807 0.9872  0.9908  0.9902 0.9914 0.9914
772 Max. 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. | 0.1342  0.1019 0.1482 0.1551  0.1490  0.1487 0.1484 0.1484

Min. 0.1363  0.1115 0.1226 0.1131 0.1188  0.1158 0.1239 0.1238

=1 Mean 0.9650 0.9552 0.9604 0.9612 0.9626  0.9604 0.9657 0.9656
Max. 1.0000  1.0000 1.0000 1.0000  1.0000  1.0000 1.0000 1.0000

St.Dev. | 0.1373  0.1138 0.1283 0.1358 0.1342  0.1293 0.1392 0.1392

Min. 0.0071  0.0076 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000

=25 Mean 0.4683  0.5202 0.5516 0.5325  0.5331 0.5274 0.5382 0.5383
Max. 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000

St.Dev. | 0.1133  0.0834 0.0387 0.0487 0.0478  0.0441 0.0524 0.0524

Min. 0.0000  0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000

=5 Mean 0.0067 0.0173 0.0070 0.0203  0.0200 0.0147 0.0284 0.0285
Max. 0.1643 0.3744 0.0842 0.2835 0.2737  0.1685 0.4719 0.4688

St.Dev. | 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051 0.0067 0.0067

Table 7: Ratio of posterior model probability for true model divided by the PMP of the best model
(summary statistics for setting ’A’, based on 50 Monte Carlo draws). Top panel corresponds to
o = 1/2, second panel to o = 1, third panel to o = 2.5, fourth panel to o = 5.

g-RIC  g-UIP g-E( ﬁ ly) EBL HG-3 HG-4 HG-RIC HG-UIP
c=1/2 | - 1.00877  0.99754 0.99798  0.99793  0.99817  0.99771 0.99771
o=1 - 1.00347  1.00200 1.00128 1.00219 1.00315 1.00126 1.00127
o=25 | - 0.99501  1.00079 1.00556  1.00320  1.00699  1.00039 1.00042
o=25 - 0.99034  1.00697 1.00594 1.00720 1.01958  1.01256 1.00692
oc=1/2 | - 0.99754  0.99926 0.99794  0.99948  0.99910  0.99998 0.99998
o=1 - 0.98166  0.97396 0.97316  0.97501  0.97398  0.97648 0.97647
oc=25 | - 0.98875  0.97284 0.96760 0.97580 0.97847  0.97631 0.97627
o=25 - 0.99578  1.00427 0.99968 1.00747 1.02216 1.01853 1.00976

Table 8: Root mean squared errors relative to g-RIC, averaged over 50 Monte Carlo draws of
data (y, X) and based on 30 out of forecasts over random sample splits of data under each draw.
Values below 1 indicate predictive performance that is superior to the g-RIC setting. Top panel
corresponds to setting A’ and bottom panel to setting 'B’.

40



Cumulated Posterior Model Probability Posterior Inclusion Probability

1.0
1
L 3
L 2

3 o g-RIC
2 g-ulP
® + HG-UIP
Iy % HG-RIC
< EBL

0.25
1

0.8
1
»
»

0.20
1

0.6
1

0.15
|
PIP

- ]
A [
st
]

Cumulated Posterior Model Probability

N
.8
a L] <
o 25,8t gRIC S
= a N -
s IS g-uIP
R + g-E(g/(1+g)lY)
[ x EBL ~
g | oy & HG-3 o
S|, Lo HG-4
g 8 HG-UIP
$ # HG-RIC o |
T T T T T °
5 10 15 20 25
Modelindex
Posterior Mean Posterior Standard Deviation
8
° £ o g-RIC E & o g-RIC
2 g-UIP s 7 & g-uIP
+ HG-UIP + HG-UIP
8 | % HG-RIC % HG-RIC
S © EBL 3 | & EBL
S
g g ® o o
g ° |@ » 9
5 § e
sy g .
£ © 'y N a g -
o o # # M
S * Cae seta S
=4 ‘ L4 e ® Y
A
& 4
® ® ®
8 | g |Fa*é . 282,70 Beeac
? S}

Figure 6: Estimation results for the PWT 6.1 data set from section 6: Top left panel shows the
cumulative posterior mass, left panel the posterior inclusion probabilities for the most important 20
variables, bottom left panel the (expected) standardized coefficients and bottom right panel these
standardized coefficients’ posterior standard deviation.

PWT 6.0 PWT 6.1 PWT6.2 PWT 6.3
g-RIC 0.01384 0.01357 0.01123 0.01476
g-UIP 0.01359 0.01227 0.01070 0.01502
HG-UIP 0.01336 0.01199 0.01053 0.01473
HG-RIC 0.01336 0.01198 0.01054 0.01471
EBL 0.01344 0.01202 0.01061 0.01475

Table 9: Root mean squared errors (RMSE) based on 30 random data partitions, as described in
section 6. Each random sample split assigns 75% as training sample retaining 25% of the data for
the forecast evaluation.

41



g=K"2 g=N  hyperUIP hyperBRIC EBL
PWT 6.0 vs. 6.1 5.46565 1.7971 1.5700 1.5714 1.5580
PWT 6.0 vs. 6.2 4.0735 1.9079 1.6364 1.6336 1.6116
PWT 6.0 vs. 6.3 5.5748  2.6756 1.9654 1.9715 1.9536
PWT 6.1 vs. 6.2 1.6936 1.5184 1.3208 1.3198 1.3037
PWT 6.1 vs. 6.3 2.0679 1.9518 1.6568 1.6573 1.6484
PWT 6.2 vs. 6.3 1.7748  2.2089 1.7516 1.7468 1.7334
PWT Overall Max / Min Ratio 7.3494  3.3100 2.3961 2.3938 2.3565

Table 10: Average PIP Max/Min ratios: for each revision pair, these are the mean of the ratio
maximum vs. minimum PIP per variable (over all 67 variables).
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g-RIC hyper-g (UIP)
PWT Revision 6.0 6.1 6.2 6.3 6.0 6.1 6.2 6.3
East Asian Dummy 0.85 0.04 0.22 0.18 0.12 0.08 0.11 0.18
Primary Schooling in 1960 0.76 1.00 0.96 1.00 1.00 1.00 1.00 1.00
Fraction of Tropical Area 0.60 0.01 0.04 0.01 0.13 0.07 0.07 0.08
African Dummy 0.23 0.99 0.94 0.96 0.76 0.95 0.91 0.82
GDP in 1960 (log) 0.16 1.00 0.96 1.00 0.95 1.00 1.00 1.00
Latin American Dummy 0.13 0.73 0.36 0.18 0.29 0.22 0.29 0.19
Malaria Prevalence in 1960s 0.13 0.00 0.01 0.01 0.08 0.09 0.10 0.25
Population Density Coastal in 1960s 0.10 0.23 0.03 0.04 0.35 0.27 0.10 0.14
Fraction Buddhist 0.06 0.21 0.17 0.11 0.63 0.78 0.60 0.36
Spanish Colony 0.05 0.01 0.03 0.03 0.29 0.07 0.09 0.11
Higher Education 1960 0.04 0.00 0.00 0.00 0.18 0.06 0.06 0.09
Fraction Confucius 0.04 0.25 0.24 0.20 0.72 0.88 0.80 0.82
Fertility in 1960s 0.02 0.68 0.91 0.91 0.38 0.82 0.88 0.77
Nominal Government GDP Share 1960s 0.02 0.01 0.01 0.00 0.72 0.28 0.38 0.25
Primary Exports 1970 0.02 0.01 0.01 0.09 0.09 0.11 0.11 0.64
Real Exchange Rate Distortions 0.02 0.00 0.00 0.00 0.53 0.07 0.05 0.08
Life Expectancy in 1960 0.02 0.00 0.01 0.00 0.06 0.05 0.05 0.07
Fraction Population In Tropics 0.01 0.00 0.01 0.01 0.07 0.06 0.06 0.08
Openness measure 1965-74 0.01 0.05 0.03 0.09 0.29 0.35 0.24 0.60
Colony Dummy 0.01 0.00 0.00 0.00 0.09 0.07 0.05 0.08
Civil Liberties 0.01 0.00 0.00 0.00 0.14 0.06 0.05 0.06
Fraction Protestants 0.01 0.04 0.04 0.01 0.28 0.14 0.17 0.13
Absolute Latitude 0.01 0.01 0.01 0.01 0.12 0.10 0.10 0.14
Fraction Catholic 0.01 0.04 0.05 0.02 0.29 0.12 0.14 0.13
Years Open 1950-94 0.01 0.01 0.01 0.02 0.13 0.07 0.08 0.17
European Dummy 0.01 0.02 0.01 0.01 0.31 0.27 0.14 0.15
Fraction Muslim 0.01 0.19 0.09 0.05 0.43 0.78 0.58 0.56
Fraction Population Over 65 0.01 0.02 0.01 0.01 0.31 0.42 0.26 0.15
Population Growth Rate 1960-90 0.00 0.01 0.01 0.01 0.09 0.08 0.08 0.14
Fraction Hindus 0.00 0.00 0.00 0.00 0.13 0.09 0.07 0.16
Government Share of GDP in 1960s 0.00 0.01 0.00 0.00 0.12 0.18 0.08 0.14
Air Distance to Big Cities 0.00 0.01 0.01 0.03 0.11 0.09 0.11 0.10
Fraction Population Less than 15 0.00 0.01 0.01 0.01 0.11 0.09 0.08 0.10
Gov. Consumption Share 1960s 0.00 0.01 0.00 0.00 0.10 0.10 0.06 0.11
Fraction GDP in Mining 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Investment Price 0.00 0.00 0.00 0.00 0.06 0.08 0.05 0.07
Timing of Independence 0.00 0.01 0.01 0.01 0.08 0.08 0.13 0.40
Fraction Speaking Foreign Language 0.00 0.00 0.00 0.00 0.07 0.05 0.06 0.07
Ethnolinguistic Fractionalization 0.00 0.00 0.00 0.00 0.06 0.11 0.07 0.07
Population Density 1960 0.00 0.00 0.00 0.00 0.07 0.08 0.06 0.09
Defence Spending Share 0.00 0.00 0.01 0.00 0.09 0.10 0.11 0.28
Political Rights 0.00 0.00 0.00 0.00 0.10 0.06 0.05 0.08
Population in 1960 0.00 0.00 0.00 0.00 0.07 0.06 0.05 0.10
War Participation 1960-90 0.00 0.00 0.00 0.00 0.06 0.06 0.07 0.06
Tropical Climate Zone 0.00 0.01 0.01 0.01 0.07 0.09 0.12 0.12
Fraction Orthodox 0.00 0.00 0.00 0.00 0.07 0.09 0.08 0.07
Square of Inflation 1960-90 0.00 0.00 0.01 0.01 0.06 0.06 0.08 0.09
Average Inflation 1960-90 0.00 0.00 0.01 0.02 0.06 0.06 0.10 0.09
English Speaking Population 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.08
Land Area 0.00 0.00 0.00 0.00 0.15 0.18 0.09 0.11
Terms of Trade Ranking 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.07
Public Education Spending Share in GDP in 1960s 0.00 0.00 0.00 0.00 0.08 0.05 0.05 0.07
Religion Measure 0.00 0.00 0.00 0.00 0.08 0.09 0.06 0.09
Revolutions and Coups 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.25
Landlocked Country Dummy 0.00 0.01 0.00 0.02 0.10 0.09 0.06 0.24
Fraction of Land Area Near Navigable Water 0.00 0.00 0.00 0.00 0.10 0.09 0.06 0.08
Size of Economy 0.00 0.00 0.00 0.01 0.07 0.10 0.07 0.11
Public Investment Share 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Socialist Dummy 0.00 0.01 0.00 0.01 0.08 0.19 0.07 0.34
Oil Producing Country Dummy 0.00 0.00 0.00 0.00 0.06 0.05 0.06 0.07
Outward Orientation 0.00 0.00 0.00 0.01 0.07 0.05 0.05 0.07
Hydrocarbon Deposits in 1993 0.00 0.01 0.01 0.01 0.09 0.24 0.17 0.61
British Colony Dummy 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.06
Capitalism 0.00 0.00 0.00 0.00 0.06 0.10 0.06 0.36
Terms of Trade Growth in 1960s 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Interior Density 0.00 0.00 0.00 0.00 0.05 0.05 0.04 0.11
Fraction Spent in War 1960-90 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.07
# Regressors 3.42 5.70 5.30 5.17 12.81 12.60 11.26 14.40
E(g/(1+g)Y) 0.9998 0.9998 0.9998 0.9998 | 0.9594 0.9665 0.9625 0.9630

Table 11: Posterior inclusion probabilities over ]%WT revisions. Left panel corresponds to fixed

g=K?, right panel to hyper-g (UIP).
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