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Université libre de Bruxelles

Dissertation présentée en vue de l’obtention du grade
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Thesis Summary

This thesis is composed of four essays on theory and applications of Bayesian Model Av-
eraging (BMA), based on joint work with Martin Feldkircher (first and second chapter),
my supervisor Robert Kollmann (third chapter), Martin Wagner (fourth chapter).

BMA addresses the econometric problem of selecting the few out of many potential
explanatory variables which should be included in the ’true’ model for an outcome vari-
able. BMA tackles such model uncertainty by assigning prior model probabilities to
each variable combination and updating them to data-based posterior model probabili-
ties. The purpose of the latter is twofold: First, they allow for inference about the true
model and its constituent variables. Second, they enable the construction of aggregate
posterior statistics as a weighted average of individual model estimators. The sound-
ness and robustness of BMA results, however, hinges on the set-up of its priors, which
therefore plays a crucial part in all chapters of this thesis.

The first chapter addresses the robustness problems arising from a default prior frame-
work that is widely used in BMA. For computing the model-specific results that provide
the basis for model averaging, most BMA studies rely on natural-conjugate Bayesian
regression with Zellner’s g (Zellner, 1986). While this framework has vital computa-
tional advantages, it requires the choice of a ’shrinkage’ hyperparameter that expresses
how tightly coefficient priors are centered at zero. Since this parameter can exert strik-
ing influence on posterior results, several articles have suggested fixing it to a ’default’
scalar (e.g., Foster and George, 1994, Fernandez et al., 2001) – a recommendation that is
widely followed in applied research. However, empirical results under this default prior
framework have been shown to suffer from a lack of robustness (Eicher et al. 2008,
Ciccone and Jarociński, 2011).

In response, we analytically demonstrate that the value of a fixed shrinkage parameter
directly affects the concentration of model weights, which in turn is crucial for robust-
ness. Under this viewpoint, the value of the shrinkage parameter should theoretically
vary with the error variance, which is unknown. We therefore propose to forgo fixed
shrinkage altogether and instead focus on an endogenous shrinkage parameter that ad-
justs to the data quality of individual models. To this end, we focus on a hyper-prior
such as the one proposed by Liang et al. (2008). A substantial part of the chapter is
dedicated to algebraically refining the incomplete analytical setup of this hyper-prior
in order to render its numerical implementation feasible. Moreover, we demonstrate
some properties of posterior results under a hyper-prior and establish a relationship
with common OLS diagnostics. Finally, simulations and an application to the empirics
of economic growth demonstrate the merits of the hyper-prior both in terms of prior
robustness and predictive performance.

The second chapter discusses the shrinkage parameter in the light of a particular robust-
ness problem highlighted by Ciccone and Jarociński (2011). Their study demonstrates
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that the importance BMA attributes to potential determinants of economic growth
varies tremendously over different revisions of growth data. The authors conclude that
default priors appear too sensible for this strand of growth empirics. In response, we
show that the found instability owes mainly to the fixed default prior setting relied
on in this exercise. We demonstrate that applying a hyper-prior to the original data
yields a marked reduction in the instability of posterior results. The improvements in
robustness come at a price, though: Results from the hyper-prior set-up show that the
conclusions to be drawn from such data are weaker than what has been implied by
previous studies (e.g., Sala-i-Martin et al., 2004).

The financial crisis of 2007-09 led to the consideration of balance sheet leverage as
a potential determinant of real economic activity (e.g., Kollmann et al., 2011). The
third chapter therefore explores whether there is empirical evidence for a link between
leverage and real activity in the US. To this end, we assess forecasts for real activity
based on leverage of the financial sector, households and non-financial businesses, while
controlling for a large set of macro/financial variables commonly used by forecasters.
We apply BMA to compare the predictive performance of leverage to that of individual
controls. In addition to in-sample results, we construct out-of-sample forecasts, requir-
ing the estimation of over two billion models. Moreover, we adjust model priors to
avoid coincidental significance of alternative predictors due to their groupwise consider-
ation. The econometric findings on the importance of leverage are complemented and
corroborated by parsimonious least squares models.

The results document that leverage is negatively related to the future growth of real
activity, and positively linked to the conditional volatility of future real activity and
of equity returns. The joint information in sectoral leverage series is more relevant for
predicting future real activity than the information contained in any individual leverage
series. Moreover, we find that the predictive power of leverage is roughly comparable
to that of macro and financial variables. Nonetheless, leverage information would not
have allowed to predict the ’Great Recession’ of 2008-2009 any better than conventional
macro/financial predictors.

The fourth chapter assesses the empirical importance of recently proposed ’financial’
predictors for US business cycles, while controlling for a wide range of established
potential explanatory variables (such as interest rates, industrial production, etc.). Ad-
dressing this proto-typical econometric exercise with standard BMA methods runs two
major risks: First, in a small sample with many controls (potentially more variables
than observations), the results can be very sensitive to the averaging set-up (even under
elaborate priors). Second, under small sample with many controls, a researcher faces a
trade-off between risking over-fitting on the one hand, and omitted variable bias for the
variables in question. Such a situation usally requires elaborate – and there specification
of controls risks to err either on the side of over-fitting

To address both issues, we propose Principal-Component-augmented Model Averaging.
This approach subsumes the control variables under a handful of factors, allowing to
concentrate model averaging on the small set of remaining ’focus’ variables (financial
indicators, in our case) as well as over the number of included factors. In contrast to
established similar methods, this setup provides for an endogenous updating of the rela-
tive importance between ’focus’ variables and controls, and thus softens the over-fitting
vs. omitted variable bias trade-off. We demonstrate that our approach is asymptoti-
cally equivalent to outright model averaging but improves robustness in small samples.

xiv



For implementation, we provide a framework with carefully adjusted ’default’ priors,
in particular on the number of factors to be included. We subsequently assess the
link between financial predictors and real activity both with Bayesian and Frequen-
tist Principal-Component-augmented model averaging. We find that results are indeed
more robust in comparison with outright BMA. In addition, we show that the predictive
performance of our approach is superior to outright BMA and closer to that of factor
models (cf. Stock and Watson, 2006). On the empirical side, we find that evidence for
a linear relationship between our financial variables and economy activity since 2000 is
limited at most.
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Abstract
The default g-priors predominant in Bayesian Model Averaging tend to over-concentrate posterior
mass on a tiny set of models – a feature we denote as ’supermodel effect’. To address it, we propose a
’hyper-g’ prior specification, whose data-dependent shrinkage adapts posterior model distributions
to data quality. We demonstrate the asymptotic consistency of the hyper-g prior, and its inter-
pretation as a goodness-of-fit indicator. Moreover, we highlight the similarities between hyper-g
and ’Empirical Bayes’ priors, and introduce closed-form expressions essential to computationally
feasibility. The robustness of the hyper-g prior is demonstrated via simulation analysis, and by
comparing four vintages of economic growth data.

Keywords: Bayesian model averaging, hyper-g prior, shrinkage factor, Zellner’s g prior, model uncertainty.
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1. CHAPTER 1

1.1 Introduction

Statistical inference that neglects model uncertainty leads to overstated confidence in statistical
estimates, as has been amply demonstrated since the seminal contributions by Raftery (1995) and
Hoeting et al. (1999). Bayesian Model Averaging (BMA) tackles such model uncertainty directly
by basing inference on a weighted average of all potential covariate combinations, or ’models’. In
a Bayesian setting, these weights arise naturally as posterior model probabilities that correspond
to the classical likelihood concept. Relying on this framework, numerous authors (e.g., Raftery,
1995; Fernández et al., 2001a; Liang et al., 2008) have demonstrated that BMA outperforms other
strategies in terms of predictive ability. Virtually all of them have so far concentrated on linear
models with model-specific inference based on the ’Normal-Gamma’ coefficient prior with Zellner’s g
(Zellner, 1986). This prior structure has proven popular in BMA, since it leads to simple closed-form
expressions of posterior statistics and because it reduces prior elicitation to the choice of a single
scalar hyperparameter g. This shrinkage parameter determines how far a model’s coefficients are
shrunk toward zero: High values for g are meant to embody weak prior knowledge and correspond
to model estimators that are close to least squares results. In contrast, low values for g imply
less reliance on the data and posterior coefficients closer to their prior values (zero). Crucially, the
parameter g shapes the weights of models in BMA. The exact specification of g is subject to intense
debate,1 but the use of a constant hyperparameter g as such has been less frequently criticized.

This paper demonstrates that the practical advantages of Zellner’s g come at a serious cost: g exerts
non-negligible influence on posterior inference since it governs how posterior mass is spread over the
models. For given data, high values of g concentrate posterior mass on few models, which runs the
risk of overfitting. In contrast, small values of g spread posterior model probabilities (PMPs) more
evenly among the models (irrespective of model sizes and size penalty terms). Posterior statistics, in
particular PMPs and the covariates’ posterior inclusion probabilities are thus notoriously sensitive
to the value of the g prior. In other words, the researcher’s prior on g determines how much posterior
mass is attributed to the few best-performing models – regardless of whether these have been
generating the data.2 In this paper, we establish the conditions for this g-induced concentration
of posterior mass (which we will henceforth refer to as the supermodel effect). While crucial in
terms of prior sensitivity, this feature went more or less unnoticed in previous simulation studies
that focused on ’asymptotic consistency’: In order to uncover a single ’true’ model in Monte Carlo
simulations with a weak noise component, such exercises profit from a large value for g that induces
posterior mass to concentrate on the best-performing model.

The proper Bayesian approach to address this problem is to introduce a non-degenerate hyperprior
distribution on g, and thus ’let the data choose’. Such a flexible prior allows for shrinking the
estimated coefficients more toward zero under models with a large noise component,3 i.e., inducing
data-dependent shrinkage. Only few papers have applied such hyperpriors in BMA so far: Among
them are Strachan and van Dijk (2004), Cui and George (2008), Liang et al. (2008), and Ley

1The literature on the optimal choice of g (e.g., Liang et al., 2008; Ley and Steel, 2011b; Hoeting et al., 1999;
Fernández et al., 2001a; Eicher et al., 2011) has concentrated on two theoretical considerations: First, asymptotic
consistency, i.e. the choice of g such that BMA asymptotically uncovers ’the true model’. However, from a Bayesian
viewpoint, many models might be ’true’, in the sense that they are generating the data examined. Second, the
specification of g was studied in terms of its virtues as a model size penalty term to favor parsimonious models. From
a Bayesian perspective, however, such preferences on parameter size should rather be considered in the formulation
of model priors, which constitute a crucial component of BMA.

2Note that this effect not only poses a risk for model averaging, but also for model selection. For instance, a
too large value for g might lead to underestimating the model uncertainty related to selecting a particular model.
Moreover, it might increase the risk of selecting the ’wrong’ model, cf. discussion in section 1.3.

3I.e. by up- or downweighting the prior beliefs on coefficients β.

2



1.1 Introduction

and Steel (2011b). These authors have proposed various hyperprior specifications in response to
theoretical issues other than the problem described above,1 but none of them has focused on the
expected properties of flexible priors under small samples. Most of these hyperpriors have in
common that their respective statistics are not available in closed form, thus forcing the researcher
to resort to MCMC sampling. The contribution by Liang et al. (2008) differs in providing a closed-
form solution – which is so computationally demanding that they implement it via analytical
approximations. In this paper, we provide algebraic transformations of the Liang et al. (2008)
prior that allow for a sound and accurate numerical application at minimal computational cost.
We use this augmented hyper-g prior to show that the model-specific advantages of the hyper-g
prior also extend to inference under model uncertainty, as it is not exposed to the supermodel
effect a priori. The hyper-g prior adjusts the distribution of posterior mass in dependence of the
information provided by the data. Thus if noise dominates the data, PMPs under the hyper-g
prior will be distributed more evenly, whereas in the case of minor noise, posterior mass will be
concentrated even more than under fixed settings with large values for g.

Based on the above considerations, the contribution of our paper is fivefold: First, we show that
fixed coefficient priors may introduce too much or too few shrinkage into individual models, but also
have an even stronger impact on the concentration of model probabilities in BMA.2 We demonstrate
the supermodel effect analytically, in a simulation exercise and an empirical application. Second,
we propose a particular prior framework that reconciles the Liang et al. (2008) hyperprior with
asymptotic consistency, and provide closed-form representations for important posterior quantities.
Third, we show further properties of the hyper-g prior: We demonstrate how its posterior statistics
are analytically related to the strand of ’Empirical Bayes’ priors, and why their results hardly differ
under data-sets with a weak noise component. Moreover, we show the relationship of the hyper-g
to the familiar OLS F-statistic as a measure of goodness-of-fit. Fourth, we show how the superior
robustness of the hyper-g prior addresses the supermodel effect under a simulation exercise with
both a simple and a complex data-generating process. Our results show that under noisy data the
hyper-g prior dilutes posterior mass among models whereas the popular fixed priors incorrectly
favor one (wrong) model. We examine the forecasting properties of various settings for g by means
of a simulation study, which points to superior predictive ability of the hyper-g prior under varying
signal-to-noise ratios. Finally, our empirical exercise illustrates this advantage in the context of
growth regressions. We show how far the BMA parameter instability over revisions of growth data
(as found by Ciccone and Jarociński (2010)) is due the supermodel effect, and that the hyper-g
prior can reduce it to a great extent.

The remainder of this study is organized as follows: the next section briefly reiterates the con-
cept of Bayesian model averaging and its most popular prior settings. Section 1.3 sketches the
reasons underlying the supermodel effect and provides formal conditions for its presence. Section
1.4 introduces the hyper-g prior, outlines further posterior statistics and properties, and introduces
an implementation strategy of practical relevance. Section 1.5 presents a simulation exercise that
examines the supermodel effect inherent to traditional priors and highlights the predictive perfor-
mance of flexible priors. The following section demonstrates the sensitivity of posterior results to
the choice of g by means of an empirical application to a prominent growth data set. Section 1.7
concludes the paper.

1See footnote 1 for a discussion of these papers’ motivations.
2The detrimental effect of fixed priors on robustness and the advantage of hyperpriors have not only been noted

in Bayesian regression-type models, but also other Bayesian frameworks (see, e.g., Giannone et al. (2012) for a similar
motivation in the case of Bayesian VARs). The impact on model averaging, however, is novel, to the best of our
knowledge.
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1. CHAPTER 1

1.2 Bayesian Model Averaging under Zellner’s g prior

This section summarizes the popular set-up of Bayesian model averaging (BMA) under the natural
conjugate framework with Zellner’s g prior and reviews the prior settings that have resurfaced
most often in the literature so far. Consider the canonical regression problem of sample size N
with the dependent variable in the N×1 vector y, Xs an N×ks design matrix of covariates, and ε
an N -dimensional vector of residuals in the following, linear model Ms:

y = 1αs +Xsβs + ε

Here αs denotes the (scalar) intercept, and βs the the ks× 1-vector of unrestricted regression
coefficients. The residuals are assumed to be normally IID with variance σ2, i.e. ε ∼ N(0, σ2I).
Note that Xs can be assumed to be centered (X ′s1 = 0) without loss of generality, as this will
only affect the posterior distribution of the constant αs. Bayesian Model Averaging deals with
uncertainty about the model Ms by drawing on the model-specific inference presented above. In
the generic linear BMA problem, model uncertainty focuses on the choice of covariates Xs, which
may be drawn from a set of K potential regressors. This induces 2K unique covariate combinations,
as represented by the model candidate space M = {M1,M2, . . . ,M2K} (cf. Hoeting et al., 1999, for
a more detailed account).

The Bayesian framework calls for specifying a prior distribution on the model’s parameters α,
βs, and σ2. The bulk of the BMA literature (e.g., Raftery, 1995; Chipman et al., 2001), favors
the natural-conjugate approach, or its variant outlined by Fernández et al. (2001a): In order to
represent lack of information over constant and variance, place improper priors on constant p(α) ∝ 1
and variance p(σ) ∝ σ−1.1 The prior on coefficients β is assumed to be normal and potentially
allows for model-specific elicitation of prior expected value and coefficient covariance. However, the
explicit formulation of these hyperparameters is difficult to perform given the many combinations
possible in model selection problems. Virtually all linear BMA applications have thus opted for
a common uninformative prior centered at zero, with the variance structure given by Zellner’s g
prior (Zellner, 1986):

βs|σ2,Ms, g ∼ N
(
0, σ2g(X ′sXs)

−1
)

This prior assumes the coefficient covariance to be proportional to the posterior covariance ex-
pression (X ′sXs)

−1 that arises from the sample, with the scalar g determining how certain the
researcher is in centering the prior coefficient distribution at zero. Apart from offering computa-
tional efficiency, Zellner’s g thus reduces the elicitation of the covariance structure to choosing the
scalar g. Employing Bayes’ theorem via

p(βs|y,Xs,Ms) =

∫ ∞
0

p(βs|Ms, y,Xs, σ
2)dp(σ2)

yields the posterior coefficient distribution as ks−variate student-t2 with expected value E(βs|y,X,Ms, g) =
g

1+g β̂s, where β̂s denotes the standard OLS estimator for Ms.
3 Note that the posterior expected

1Note that the specification for α and σ departs from earlier tradition which typically elicited proper priors for
the two parameters. However, both choices do not affect the crucial posterior statistics: The improper prior on the
constant allows for an easy disentanglement of the constant with respect to the other coefficients. In contrast to the
traditional Gamma-priors, the improper prior on σ offers the advantage of being invariant under scale transformations
(Fernández et al., 2001a, p. 391)

2Note that this posterior distribution requires N > 2.
3The posterior variance of βs is y̆′y̆

N−2

(
1− g

1+g
R2
s

)
g

1+g

(
X ′sXs)

−1, where y̆ = y−1ȳ denotes the centered response

vector.
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1.2 Bayesian Model Averaging under Zellner’s g prior

value is a convex combination of its OLS estimator and the prior expected value (zero) weighted
by the shrinkage factor g

1+g . The larger the shrinkage factor, the more importance is attributed to
sample data rather than to prior information.

For its use in BMA, the main advantage of Zellner’s g is that it yields a closed-form expression for
the marginal likelihood of Ms:

1

p(y|Ms, g) ∝ (1 + g)−
ks
2
(
1− g

1+gR
2
s

)−N−1
2 (1.1)

with ks denoting the number of covariates included in model Ms and R2
s its OLS R-squared. This

marginal likelihood is crucial in determining the posterior model probability that arises from Bayes’
theorem p(Ms|y,X, g) ∝ p(y|Ms, X, g)p(Ms) as an update of a prior model probability p(Ms):

p(Ms|y,X, g) =
p(y|Ms, X, g)p(Ms)∑2K

j=1 p(y|Mj , X, g)p(Mj)
(1.2)

Multiplied with a normalization constant, these posterior model probabilities serve as model weights
in Bayesian model averaging. In this vein, the marginal posterior distribution of any statistic Θ
may be obtained as a mixture over posterior model probabilities:2

p(Θ|y,X, g) =

2K∑
j=1

p(Θ|y,X,Mj)p(Mj |y,X, g)

This property is particularly useful in computing the posterior moments of the coefficient vector β
as a weighted average over all models.3 Likewise, posterior inclusion probabilities (PIPs), used for
assessing the importance of single covariates, are obtained as the sum of probabilities for all models
in which the covariate is included.

In view of equation (1.2), BMA inference hinges on posterior model probabilities and, in turn, on two
important prior specifications: the model priors p(Ms) and Zellner’s g prior for the coefficients: The
Bayesian framework calls for defining prior model probabilities p(Mj) for all models contained in the
model space j ∈ {1, 2, . . . , 2K}. While advocates of purism may call for subjective prior specification
of p(Ms), the number of model candidates renders this virtually infeasible. Consequently, most
authors have relied on the uniform model prior p(Ms) = 2−K , whereas several (Brown et al., 1998;
Sala-i-Martin et al., 2004; Ley and Steel, 2009) have proposed to specify model priors in dependence
of average model size ks, typically in such a way that prior elicitation is reduced to choosing the
prior expected model size.

In addition to model priors, the choice of Zellner’s g prior crucially affects marginal likelihoods
p(y|Ms, X, g) and thus PMPs. Its discussion so far has focused on two considerations:

1Note that although the term ((y − ȳ)′(y − ȳ))−
N−1

2 is constant over models, it is frequently included in the
marginal likelihood expression, such as in Fernández et al. (2001a) – while others, such as Liang et al. (2008) omit it.

2Note that the concept lined out in equation (1.2), and its implication for posterior statistics, is of course not
limited to linear models alone. However, the bulk of the empirical BMA literature focuses on linear models using the
g-prior described in this section. The purpose of this paper is to discuss the g-prior’s consequences for linear models,
and thus it refrains from discussing the implications of similar priors for more complex models.

3Note that we have retained the improper priors for α and σ as common to all models.
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• Consistency: The choice of g such that posterior model probabilities asymptotically uncover
’the true model’ MT , i.e. p(MT |y,X, g)→ 1 as N →∞

• The importance of g as a penalty term enforcing parameter parsimony (the factor (1+g)
kj−ks

2

in (1.2))

Both issues have been reviewed by Fernández et al. (2001a): With respect to consistency, they

prove that a choice of g = w(N) such that limN→∞w(N) = ∞ and limN→∞
w′(N)
w(N) = 0 ensures

consistency as it was mentioned above. Still, consistency leaves open the exact specification of g.
Over the course of more than a decade, various ’automatic’ or ’default’ specifications have been
put forward (e.g., Fernández et al., 2001a; Eicher et al., 2011) that typically specify g according to
sample size N . Note that the bulk of the literature concentrates on priors fixing g in such a way

that the penalty term (1 + g)−
ks
2 in (1.2) asymptotically mimics popular information criteria.1 In

particular, two settings for g resurface steadily in the literature: The Unit Information Prior (g-UIP)
corresponds to g = N . Through its dependence on sample size it is a consistent prior and draws on
the notion that the ’amount of information’ contained in the prior equals the amount of information
in one observation (Kass and Wasserman, 1995). Fernández et al. (2001a, p.424) demonstrate that
as N → ∞ the log of the Bayes factor for two models approaches the ratio of their Bayesian
information criteria. Secondly, setting g = K2 (g-RIC) calibrates the posterior model probability
to asymptotically match the risk inflation criterion proposed by Foster and George (1994). Based
on an extensive study of various specifications for g, Fernández et al. (2001a) recommend the
’benchmark’ prior which bridges the g-UIP and the g-RIC by setting g = max(N,K2).

1.3 The Supermodel Effect

The advantages of Zellner’s g prior have fostered its widespread use in BMA, even though its
exact specification is still subject to debate (as highlighted by the previous section). In general,
g determines the tightness of the prior distribution on coefficients β around their prior expected
value zero: Large g implies a diffuse prior distribution, i.e. the researcher is very uncertain about
the prior expected value and relies heavily on the data. Small g means a prior that is more tightly
centered at zero,2 and leaves less scope to the data to determine the coefficients. In this sense,
it is evident why most g specification schemes aim to set this hyperparameter according to data
quality: A high signal-to-noise ratio warrants strong reliance on the data and thus a high g, while
an important noise component should be met with a low g.

In practice, the choice of g can have considerable consequences for the robustness of BMA results.
For instance, with very noisy data, a large g could attribute too much weight to results that are
mainly driven by a particular realization of the error term. Such a case may lead to situations
as in Ciccone and Jarociński (2010), who show that BMA under the ’benchmark’ specification
from Fernández et al. (2001a) produces results that differ strikingly over small revisions to the

1Information criteria are a widely used approach for model selection and are conceptually similar to the marginal
likelihoods that arise from incorporating model uncertainty in a Bayesian framework (Indeed, several popular in-
formation criteria (IC) can be derived from such a setting, such as Schwarz (1978)). Drawing on this similarity,
’frequentist’ model averaging techniques rely on IC in order to obtain ’posterior’ model weights (see Claeskens and
Hjort, 2008, for an overview). Due to their numerical connections, empirical results under IC-based linear model
averaging are usually quite similar to BMA with g-priors that mimick IC. In this paper, we therefore forgo the explicit
discussion of IC-based model averaging techniques, and concentrate on their Bayesian analogues.

2In general, small g implies centering at the prior (expected values of coefficients). Here, we follow the bulk of
the literature in presupposing coefficient priors to be centered at zero.
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1.3 The Supermodel Effect

response variable. Such robustness problems can arise from a too loose g that focuses posterior
model mass on too few ’supermodels’. In this section, we demonstrate that g is positively linked
with the concentration of posterior model probabilities – and that this supermodel effect matters
to empirical practice. A look at the role of the shrinkage factor g

1+g in the marginal likelihood from
(1.1) provides some intuition:

p(y|Ms, g) ∝ (1− g
1+g )

ks
2︸ ︷︷ ︸

A

(
1− g

1+gR
2
s

)−N−1
2︸ ︷︷ ︸

B

(1.3)

The shrinkage factor g
1+g affects marginal likelihood (and thus posterior model probability) via a

size penalty term (A) and a model fit term (B). The term (A) shapes the distribution of posterior
mass between different model sizes, while term (B) determines the concentration of PMP within
models of the same size ks. Among models of the same size ks, larger g

1+g will increase the relative

posterior weight of the models with the largest R2
s. The term (B) thus implies a direct positive link

between the shrinkage factor and relative PMP concentration among models of the same size ks.

The term (A) has stimulated most of the debate on the g prior through its virtues as a size
penalty term that could mimic well-founded information criteria. But from a Bayesian viewpoint,
size penalty represents prior preferences on model size that should be fused into the formulation
of the model prior rather than a coefficient prior. Instead, one should consider that the term
(A) can reinforce the link between g and PMP concentration: Increasing the shrinkage factor
g

1+g strengthens the size penalty and skews the posterior model size distribution to smaller (more
parsimonious) models. When most of the posterior mass focuses on models below the size of K/2
(which typically applies to empirical exercises), strengthening the size penalty means concentrating
mass on model sizes that comprise fewer models to choose from. In this sense, the term (A)
contributes to a positive link between g and PMP concentration.

The interplay of posterior model size distribution (from term (A)) and relative PMP concentration
among models of a given size (from term (B)) is not straightforward, and can depend on data
set characteristics and the particular value of g. Proposition 1 therefore formally pins down the
conditions for the supermodel effect:

Proposition 1 For linear BMA with a fixed common Zellner’s g prior, a given realization of
(y,X), and any model prior that does not depend of g, the following holds: The cumulative posterior
probability of the best r models have a non-negative derivative with respect to g if Er(k|y,X) + η <
E(k|y,X), where E(k|y,X) represents posterior model size and Er(k|y,X) expected posterior model
size of the best r models; with η > 0 vanishing as N →∞ or g →∞.

Thus an increase in g will increase the concentration of PMP on the most important models (by
PMP), as long as their average model size is somewhat smaller than the overall posterior model size.
Conversely, the most important models could only lose PMP with increasing g if their model sizes
are relatively large. In any case, the cumulative PMP of the most important models will increase
almost sure over the domain of g.1 Proposition 1 also holds implications for the special case of
model selection (as opposed to model averaging): Increasing g attributes increasingly (perceived)
posterior importance to the model which the largest PMP (if its model size is smaller than average
model size). However, at some point the conditions of Proposition 1 will not be met locally, and the
PMP of this best-performing model will be overtaken by the PMP of a model with fewer parameters.

1This result obtains trivially from the fact that the PMP for the null model tends to 1 as g approaches infinity,
and that the null model will be the most important model for all g greater than some finite ḡ.
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Thus, model selection with high g values under fixed priors risk selecting a too small model (that is
possibly not even nested in the ’ true’ model), and underestimating the model uncertainty around
it.

In order to illustrate the supermodel effect, consider the BMA results from the growth data set as
in section 1.6, for different values of g and under uniform model priors.1 Figure 1.1 (top panel)
exhibits the posterior model size as well as the cumulative posterior probability of the best 2,000
models for varying values of g. The results show that increasing g leads to a marked reduction in
posterior model size, while increasing the concentration of posterior model probabilities. The rate
of increase in the PMP of the best 2,000 models certainly depends on the characteristics of the
data set and might vary locally, but the exercise illustrates that the concentration of PMP broadly
intensifies with increasing g. In particular, this effect applies to ranges of g that are typically used
in the empirics of economic growth.

The previous discussion has shown that term (B) in equation (1.3) directly links g positively with
PMP concentration. In contrast, term (A) might have an ambiguous effect, which also underlies
the qualifying conditions in Proposition 1. In order to disentangle the two effects in the empirical
exercise, we neutralize the term (A) by the following model prior:

p(Ms) =
(1 + g)

ks
2

(
√

1 + g + 1)K

Such a model prior exactly cancels the size penalty term (A) in the marginal likelihood (1.3).
The impact for differing values of g is shown in Figure 1.1 (bottom panel). When size penalty
is neutralized, higher g leads to increased posterior model size, as posterior model mass then
concentrates more on the least parsimonious model which have the largest R2. As expected, the
cumulative PMP of the best 2,000 models increases with g, although at a considerably lower pace
than under the uniform model priors discussed above. We therefore conclude that for the growth
data examined in this paper, the supermodel effect has a sizable impact, and is mainly driven by

the size penalty term (1− g
1+g )

ks
2 .

Note that the supermodel effect not only has implications for the skewness of the PMP distribu-
tion, but also for the regressors’ posterior inclusion probabilities (PIPs). The term (B) in (1.3)
establishes a direct positive link between g and the concentration of PIPs, as larger g leads to more
concentration in the relative PMPs for each model size. The term (A) can reinforce this effect:
Note that the variance of R2 for models of size k is by definition (weakly) greater than the variance
of R2 for models of size K − k. This implies that relative PMP concentration among models of
the same size k is more intense for smaller k. Increasing g therefore tends to skew the relative
distribution of the PIPs. In view of Proposition 1 and the above illustration we therefore conclude
that g is positively linked not only with the concentration of PMPs, but also of posterior inclusion
probabilities.

1.4 Flexible priors: The Hyper-g Prior

The previous section has demonstrated the problems with fixed g priors: First, it might be in-
sensitive to assume a common parameter for all models considered, and second, eliciting the right

1Results are from BMA estimations with uniform model priors of the Sala-i-Martin et al. (2004) data set with
growth and initial income according to the Penn World Tables revision 6.3. Figure 1.1 displays the result for 24
different values of g, each estimated from MCMC sampling with 200,000 burn-in draws and 2,000,000 subsequent
iterations.
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parameter value strongly risks over- or under-identification with respect to posterior model and
inclusion probabilities. Introducing a flexible hyper-prior on g, in contrast, would allow to update
prior beliefs according to data quality, and thus mitigate the risks from choosing a prior value for
g.

In principle, the concerns raised in the previous section might be addressed by virtually any flexible
hyper-prior setting for g. Based on different motivations, recent contributions have introduced
several candidates that could potentially be used to that end (cf. Ley and Steel, 2011b, for an
overview). However, most of them do not yield closed form solutions for posterior statistics of
interests. Instead, those have to be obtained by numerical sampling techniques, which complicates
the computationally demanding task of evaluating models in BMA. Among the proposed candidates
g, only the hyper-g prior by Liang et al. (2008) stands out as fairly flexible prior distribution that
allows for closed-form posterior statistics. We therefore concentrate on the latter approach to
demonstrate the properties of hyper-priors vs. fixed priors.

Liang et al. (2008) introduce two priors motivated on theoretical grounds,1 among them the closed-
form hyper-g prior. While they ingeniously outline the basic features of the hyper-g prior, their
posterior expressions involve ratios of hypergeometric functions, which are difficult to evaluate
computationally. For feasible computational implementation, the authors thus resort to Laplace
approximations – an approach that risks numerical inaccuracies, in particular with respect to the
mentioned ratios. This section therefore introduces algebraic transformations of these expressions
that yield accurate statistics at low computational cost. Moreover it complements Liang et al.
(2008) by establishing additional, common posterior expressions, in particular with respect to
second moments of posterior parameters and predictive distributions. Finally we proceed to show
some properties of the hyper-g prior, in particular how it be may reconciled with consistency in the
sense of Fernández et al. (2001a), its asymptotic equivalence to the Empirical Bayes (EBL) prior,
and the relationship between its posterior statistics and the OLS F-statistic.

1.4.1 The hyper-g prior and its posterior statistics

The hyper-g prior for g translates into a Beta prior on the shrinkage factor g
1+g that is common to

all models (Liang et al., 2008, p. 415):

g

1 + g
∼ Beta

(
1,
a

2
− 1
)

i.e. g
1+g is Beta distributed with E( g

1+g ) = 2
a .2 The elicitation of g is therefore supplanted by the

choice of the hyperparameter a ∈ (2,∞): a = 4 renders the prior distribution of g
1+g uniform, while

moving a close to 2 concentrates the prior mass on the shrinkage factor close to 1. Conversely, any
a > 4 tends to concentrate prior mass near 0. Liang et al. (2008) therefore omit those cases and
concentrate on a ∈ (2, 4] – a strategy we will follow in this study.

1Liang et al. (2008) motivate their paper with two ’paradoxes’ that arise with constant g. First, they raise a
BMA formulation of ’Bartlett’s paradox’ stating that if g → ∞ for fixed N and K, the Bayes Factor B(Ms : M0)
of any model with respect to the null model eventually goes to zero. Second, they refer to an ’information paradox’
stating that for fixed N and K, if the R-squared of model Ms converges to unity, its Bayes factor with respect to any
other fit-wise inferior model does not go to infinity. Moreover, both arguments bite only in the case when N and K
are kept constant: Bartlett’s paradox in this case may be less relevant as typical specifications for g require it to rise
in line with N . The ’information paradox’ does not contradict the standard consistency argument that requires the
respective Bayes Factor to converge to infinity only when N tends likewise to infinity. See the comment by Zellner
(2008) for a more detailed discussion.

2Note that this is equivalent to putting the following prior on g: p(g) = a−2
2

(1 + g)−
a
2 .
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1. CHAPTER 1

An integral representation for the Gaussian hypergeometric function 2F1(a, b, c, z) allows for straight-
forwardly establishing the model-specific posterior distribution of the shrinkage factor (Abramowitz
and Stegun, 1972, p.563).

p( g
1+g |y,Xs,Ms) =

ks + a− 2

22F1

(
N−1

2 , 1, ks+a2 , R2
s

) (1− g
1+g

) ks+a−4
2

(
1− g

1+gR
2
s

)−N−1
2

(1.4)

The kernel of the shrinkage factor’s posterior distribution mimics the expression for marginal model
likelihood (1.1).1 It thus skews the posterior density towards values close to one as the parameters N
or R2

S increase. In contrast, the shrinkage factor density concentrates closer to zero with increasing
parameter size ks or the hyperparameter a. In other words, the posterior density adapts to a
model’s marginal likelihood, rewarding good fit with increasing the shrinkage factor towards one
(i.e., emulating maximum -likelihood estimates), while punishing parameter size with shrinking
posterior estimates towards zero. In this sense, the posterior density of g

1+g |y,Xs,Ms follows a
behavior similar to information criteria or the OLS F-statistic.

The integration constant of (1.4) is a Gaussian hypergeometric function, which consequently also
turns up in the expression for marginal likelihood of model Ms (cf. Liang et al., 2008, equation
(17)):

p(y|Xs,Ms) ∝ (y̆′y̆)−
N−1

2 a−2
ks+a−2 2F1

(
N−1

2 , 1, ks+a2 , R2
s

)
(1.5)

While this expression differs from the expression for marginal likelihood under fixed g (1.1), it
displays similar behaviour with respect to parameters. Its partial derivatives with respect to pa-
rameters correspond to the ones in (1.1). Building on equation (1.5), Liang et al. (2008, equation

(19)) proceed by expressing the posterior expected value of the shrinkage factor E
(

g
1+g

∣∣∣y,Xs,Ms

)
as a ratio of two hypergeometric functions. The expression is primarily relevant for the expected
value of the response:2

E(y|Xs,Ms) = 1E(αs|Xs,Ms) + E
(

g
1+g

∣∣∣y,Xs,Ms

)
Xsβ̂s (1.6)

with β̂s denoting the estimated OLS coefficient for model Ms. Equation (1.6) highlights the impor-

tance of the shrinkage factor, as the hyper-g prior allows for model-specific, data-adaptive shrinkage
as opposed to fixing the value for the shrinkage factor a priori.

The posterior statistics outlined so far suffice for the analysis in Liang et al. (2008). However,
fully Bayesian inference requires several more expressions, notably with respect to second moments.
Therefore, we introduce in equations (1.7)-(A.2) the moments of the shrinkage factor and the coeffi-
cients, as well as the posterior distribution of coefficients (For completeness, the posterior predictive
distribution is provided in the appendix). Note that straightforward integration characterizes all
of these posterior moments as fractions of differing hypergeometric functions. However, they may
all be expressed as functions of a single scalar F ∗s ≡ 2F1(N−1

2 , 1, ks+a2 , R2
s) using Gauss’ relations

for contiguous hypergeometric functions (Abramowitz and Stegun, 1972, p.563). Let N̄ ≡ N − 3

1Note that due to this feature, the mode of density (1.4) is the local Empirical Bayes prior (EBL) from section 1.4.2.
2Note that E (βs|y,Xs,Ms) = E

(
g

1+g

∣∣∣y,Xs,Ms

)
β̂s.
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1.4 Flexible priors: The Hyper-g Prior

and θ̄s ≡ ks + a− 2 represent collected terms. Tedious, but straightforward algebra then yields the
following results for posterior moments (as long as R2

s ∈ (0, 1)):1

E

(
g

1 + g

∣∣∣∣y,Xs,Ms

)
=

1

R2
s(N̄ − θ̄s)

(
θ̄s
F ∗s
− θ̄s + N̄R2

s

)
(1.7)

Cov(β|y,Xs,Ms) =
y̆′y̆

N − 2
(X ′X)−1 N̄

(N̄ − θ̄s − 1)2 − 1

1−R2
s

R2
s

×

×
((

1 +
2

N̄

R2
s

1−R2
s

)
θ̄s
F ∗s

+ ((N̄ − 2)R2
s − θ̄s)

)
(1.8)

Note that the equations above all contain the term θ̄s/F
∗
s .2 So for each model’s statistics, a

hypergeometric function (or its Laplace approximation) has to be computed only once, which
benefits numerical implementation in terms of computational burden.3 In the BMA implementation
used in the next section, the speed loss of hyper-g vs. a fixed-g setting is around 30%. Similarly
cumbersome algebra also establishes the higher moments of the shrinkage factor and the moments
of the predictive distribution as simple transformations of θ̄s/F

∗
s . Section 1.A.1 in the appendix

presents these terms for reference, as well as a closed-form expression for the posterior coefficient
density.

1.4.2 Properties of the hyper-g prior

The hyperparameter a can be trimmed to capture prior beliefs on the shrinkage factor in the
associated Beta distribution. It is straightforward, for instance, to specify the prior beliefs such
that the expected shrinkage factor matches the expressions of popular fixed g priors. In general,
most popular settings for g can thus be emulated by a = 2 + 2/w(N), with w(N) > 0, w′(N) > 0

and limN→∞w(N) = ∞, thus positioning the prior expected value at E( g
1+g ) = w(N)

1+w(N) . Setting
a in dependence of sample size has the appealing virtue of ensuring ’consistency’ in the sense of
Fernández et al. (2001a, p.6).4 By the same mechanism as in the corresponding fixed settings, the
weight of the prior vanishes with increasing sample size and thus lets the posterior probability of a
’true’ model p(MT |y) tend to to unity. Note that this applies to any true model; a proof is provided
in section 1.A.2 in the appendix.
In this light, we concentrate on the following specifications for adaptive shrinkage priors:

• HG-UIP : a= 2+ 2
N corresponds to the ’g-UIP’-shrinkage factor with E

( g
1+g

)
= N

1+N . Then

95% of the prior mass on the shrinkage factor is contained in the interval [1− 0.95N , 1].

1In case R2
s = 0 (in particular for the null model), the respective quantities are E

(
g

1+g

∣∣∣y,Xs,Ms

)
= 2

ks+a
, and

Cov (βs|y,Xs,Ms) = 2
ks+a

y̆′y̆
N−2

(X ′X)−1

2Note that θ̄s/F
∗
s is just 2/(a− 2) times the integration constant of p(g|y,Xs,Ms) or θ̄s/F

∗
s = a−2

BF (Ms:M0)
where

BF (Ms : M0) is the null-based Bayes Factor for model Ms.
3Note that with respect to equations (1.7) and (A.1) it is straightforward to derive the corresponding expressions

for E(g|y,Xs,Ms) and E(g2|y,Xs,Ms). However, E(g|y,Xs,Ms) will only be finite for ks+a > 4 and E(g2|y,Xs,Ms)
only for ks + a > 6. We therefore concentrate on the posterior moments of the shrinkage factor.

4Consistency does not directly apply to the g-RIC prior outlined below. However, throughout the following
sections, g-RIC is in practice identical with the g-BRIC prior (as always K2 > N). Since the latter qualifies for
consistency, the notion may be extended to g-RIC, at least in our case.
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• HG-RIC : a= 2+ 2
K2 corresponds to ’g-RIC’-shrinkage with E

( g
1+g

)
= K2

1+K2 . In this case 95%

of the prior mass is contained in the interval [1−0.95K
2
, 1]. Akin to Fernández et al. (2001a),

such a setting will be asymptotically consistent by choosing w(N) = max(N,K2).

• Empirical Bayes – Local (EBL): gs = arg maxg p(y|Ms, X, g). Authors such as George and
Foster (2000) or Hansen and Yu (2001) advocate an ’Empirical Bayes’ approach by using
information contained in the data (y,X) to elicit g. The latter provide a theoretical under-
pinning for doing so locally, i.e. separately for each model. In the formulation given in Liang
et al. (2008), this corresponds to gs = max(0, Fs − 1) where Fs is the standard F-statistic for

Ms, with Fs = R2
s(N−1−ks)
(1−R2

s)ks
. Note that this formulation frequently raises objections, since it is

not necessarily consistent and the data-dependency of g runs counter the intuition of a prior.

Similarly, other specifications akin to ’classic’ g formulations could be implemented – as long as
they depend on N as defined above, in order to retain asymptotic consistency. Henceforth, we will
refer to such elicited hyper-g priors as ’consistent hyper-g priors’. However, as posterior expressions
are quite insensitive to the value of a, and most of these formulations will lead to a close to 2, the
resulting posterior statistics will be virtually identical. We therefore limit our attention to the two
specifications above.

Equations (1.7)-(1.8) reveal a certain resemblance to the respective posterior statistics under the
’Empirical Bayes - Local’ (EBL) approach, whose posterior statistics depend on the OLS F-statistic.
This feature is not surprising, as many Bayesian posterior statistics under a well-defined, non-
degenerate prior asymptotically converge to their maximum-likelihood equivalent. Section 1.A.3 in
the appendix shows that also the posterior model probabilities under EBL and consistent hyper-g
priors (1.5) converge asymptotically, given that the ’true’ model is not the null model (with zero
covariates). But the similarities between EBL and hyper-g priors also extend to small samples:
The main difference between their posterior expressions is the term θ̄s/F

∗
s , which guarantees non-

negativity for the hyper-g statistics. Considering that the models associated with very low θ̄s/F
∗
s

(and thus high PMP) are disproportionally weighted into model averaging, this term thus virtually
disappears from model-averaged statistics, if the data is not completely dominated by noise.1 Con-
sequently, the posterior statistics under both types of flexible priors will be very similar under any
sample with a decent signal-to-noise ratio. However, compared to hyper-g, the EBL setting has
two major drawbacks: First, it is not a prior in the classical sense, as it draws on the dependent
variable. Second, it cannot be established whether the EBL setting is consistent if the true model
is the null model. Nonetheless, due to its computational simplicity, the EBL prior can serve as a
reasonable approximation to (and shares its asymptotic properties with) the hyper-g prior under
data with a small noise component.

In view of the resemblance between the hyper-g prior results and the OLS- F-statistic, the posterior
distribution of the shrinkage factor g

1+g could be interpreted in terms of goodness-of-fit: Equation

(1.7) presents its model-specific expected value as close to 1−1/F̂s, where F̂s represents an adjusted

OLS F-statistic for the model Ms: F̂s = R2
s(N̄−θ̄s)

(1−R2
s)θ̄s

. Larger values of the shrinkage factor hence

correspond to more variance explained by the model Ms. The model-averaged expected value of
the shrinkage factor E( g

1+g |y,X) may be interpreted likewise. If K + a < N + 1,the following
inequality will hold asymptotically under a consistent hyper-g prior as N tends to infinity – in

1Note that 2F1(N−1
2
, 1, ks+a

2
, R2

s) increases rapidly as R2
s increases. The term θ̄s/F

∗
s could thus noticeably affect

model-averaged posterior moments only in case the data examined offers a very low signal-to-noise ratio.
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1.5 A simulation exercise

small samples, it will hold as well except in cases of very low data quality (cf. section 1.A.4).

(1− p(M0|y,X))2

1− E( g
1+g |y,X)

≤ E
(
N̄ − θ̄
θ̄

R2
s

1−R2
s

∣∣∣∣y,X) ≡ E(F̂ |y,X) (1.9)

The model-weighted average of adjusted F-statistics thus establishes an upper bound for the pos-
terior shrinkage factor. Consequently, the shrinkage factor can be related to goodness-of-fit in the
data (y,X). The term involving the probability of the null model p(M0|y,X) is necessary, since
the F-statistic of a model Ms will in general move in line with E( g

1+g |y,X,Ms), except in case of

the null model (there, the posterior conforms to the prior 2
a).

A similar argumentation allows for relating posterior shrinkage to the F-statistic of the full data
sample: If N → ∞ under a consistent hyper-g prior, then the F-statistic of the full model with
K regressors will form an upper bound for a function of posterior shrinkage (inequality (1.10)).
Note that this inequality will also hold in small samples as long as there are some posterior model
probabilities considerably larger than the one of the null model.1

1

1− E( g
1+g |y,X)

≤
R2
F

(1−R2
F )

(N − E(k|y,X)− a− 1)

(E(k|y,X) + a− 2)
(1.10)

Here, R2
F denotes the OLS R-squared of the full model, and E(k|y,X) is the expected posterior

model size. The right-hand side thus constitutes an adjusted F-statistic that relates R2
F with

’effective parameter size’ E(k|y,X) + a − 2. Note that this adjusted F-statistic is (almost sure)
larger than the F-statistic of the full model, which illustrates the estimation advantage of shrinkage
methods versus OLS. It is thus straightforward to express shrinkage as a function bounded by
the unadjusted OLS F-statistic, which allows for applying likelihood-ratio significance tests in a
classic sense. The relationship between the F-test and and information criteria thus implies that
the posterior expected shrinkage factor is an indicator for goodness-of-fit of the model average that
behaves similar to information criteria.

1.5 A simulation exercise

In this section we carry out a simulation study that empirically investigates the supermodel effect
and assesses the predictive performance of selected prior structures. We group this broadly into
fixed prior settings, as discussed in section 1.2, as opposed to model-specific adaptive flexible g
priors (as in section 1.4.1). In the following, we concentrate on the 8 prior structures given in Table
1.1.

The first two fixed settings correspond to what Fernández et al. (2001a) coined the ’benchmark’
prior and is widely used in applied work.2 In macroeconomic studies such as (e.g., Fernández et al.,
2001b), their recommendation usually results in the g-RIC prior. The implied (large) value for g
under g-RIC is expected to have two consequences: first g-RIC will favor parsimonious models, and
second posterior mass will be concentrated on a small set of models.3 The unit information prior

1Even though this inequality will hold in virtually all relevant cases for small samples, it may not hold in case
the dependent-covariate correlation is less than expected under a null hypothesis of no relation. As a rule of thumb,
R2
F > K+a−2

N−3
is sufficient for (1.10) to hold in any case. Please refer to section 1.A.4 in the appendix for further

details.
2See, for instance, Fernández et al. (2001b), Masanjala and Papageorgiou (2008) as well as Koop and Potter

(2003).
3Note that this feature facilitates quick convergence of stochastic search algorithms such as the MC3 to the target

distribution.
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Fixed Prior Settings

g-RIC Risk inflation criterion, g = K2.
g-UIP Unit information prior, g = N .
g-E( g

1+g |y) g
1+g is set to the posterior mean under the HG-4 prior (i.e. E( g

1+g |y)).

Flexible Prior Settings

EBL Local empirical Bayes estimate of g.
HG-3 Hyper-g prior with a = 3.
HG-4 Hyper-g prior with a = 4.
HG-RIC Hyper-g prior with a = 2 + 2/K2.
HG-UIP Hyper-g prior with a = 2 + 2/N .

Table 1.1: Definition of Prior Settings.

and the g-E( g
1+g |y) complete the set up for fixed prior structures on g. For the latter we impose

g
1+g a priori to equate the (model weighted) posterior mean of ( g

1+g |y) under the HG-4 setting (the
hyperprior with a = 4). We have chosen this particular prior structure to exemplify the impact of
adaptive shrinkage: both the HG-4 and g-E( g

1+g |y) priors share the same average shrinkage factor
and thus should yield a similar posterior model size distribution. However, posterior results are
expected to seriously differ regarding the relative concentration of PMPs. In keeping g constant,
the g-E( g

1+g |y) setting will favor models which have a comparably small posterior support under

the HG-4 prior. The differing results between g-E( g
1+g |y) and HG-4 thus illustrate the impact of

model-specific shrinkage as opposed to adapting the aggregate shrinkage factor to the data.

The flexible prior structures with model specific, data-dependent shrinkage divide into local em-
pirical Bayes (EBL) estimates and the hyper-g prior corresponding to a fully Bayesian approach.
One strength in placing a prior on g lies in the fact that we can incorporate our prior beliefs fol-
lowing the rules of Bayesian statistics1 via the hyperparameter a. For the simulation study, we
devise four different values for a: HG-3 (a=3) corresponds to a prior expected shrinkage factor of
2
3 , whereas HG-4 (a=4) corresponds to a flat prior over the shrinkage factor. We contrast these two
settings with two consistent priors that are calibrated to match the g-RIC and g-UIP prior structure
(HG-RIC, HG-UIP). I.e., the prior expected value of the shrinkage factor E( g

1+g ) conforms to the

shrinkage factors induced by g-RIC (g = K2) or g-UIP (g = N).

Data-wise, we employ two different settings, where the first set-up ’A’ follows Fernández et al.
(2001a). Each Monte Carlo run draws ten potential explanatory variables (x1, . . . ,x10) with N =
100 observations from a standard normal distribution for each covariate. Five more variables are
generated by multiplying the first five regressors with the vector (0.3, 0.5, 0.7, 0.9, 1.1) in order to
induce a correlation structure among the covariates. Note that this correlation structure hampers
uncovering the data-generating model under short samples.

The second set-up ’B’ is more demanding since the data-generating process cannot be traced back
to a single model. This is more in line with the Bayesian model averaging approach, whose question
is not whether the preferred model is perfectly true, but whether under the assumed model(s) the
observed data is a plausible outcome.2 The data-generating process is composed of five partially
nested models with unequal model weights imposed. This creates a ’hierarchy’ of models, with y4

1See Laud and Ibrahim (1995) for a model selection approach designing information criteria that allow for the
input of prior knowledge.

2See, for instance, Gelman et al. (1995).
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and y5 dominating the remaining models in terms of explained variation.1

Setup ’A’: y = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε

Setup ’B’: y = 0.2y1 + 0.1y2 + 0.1y3 + 0.3y4 + 0.3y5

y1 = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε
y2 = 4 + 4x1 − x5 + 1.5x2 + x8 + 0.5x11 + σε
y3 = 4 + 1x5 − x7 + 1.5x3 + x9 + 0.5x6 + σε
y4 = 4 + 2x1 − x2 + 1.5x4 + x7 + 0.5x6 + σε
y5 = 4 + 2x1 − x10 + 1.5x11 + x12 + 0.5x13 − 2x14 + σε

Posterior inference under the different prior structures will be examined with varying signal-to-noise
ratios. In particular we conduct the simulation study for four levels of noise:2 σ = 1/2, σ = 1, σ =
2.5, σ = 5. For each value of σ and each setting, results are computed as averages from 50 Monte
Carlo draws. The relatively low number of covariates K = 15 allows for easily enumerating the full
model space of 2K models. This guarantees that the differences of results for the competing priors
do not arise from variation due to stochastic search.

Empirical research frequently focuses on the posterior inclusion probabilities (PIPs) of the variables
entering the analysis and the posterior moments of the related coefficients. Table 1.2 and 1.3
highlight PIPs for setting ’A’: Under a small degree of noise (σ = 1/2 and σ = 1) results do not
differ considerably between fixed and data-dependent priors for g. Under the σ = 2.5 setting, the
PIPs of the coefficients from the the data-generating model exhibit differences in magnitude but
still lead to the same interpretation. Results change when looking at the σ = 5 case. Posterior
mass under the flexible priors is spread more evenly than under fixed g priors. The g-RIC prior
shows strong support for the first variable, with a large PIP for β1 of approximately 0.8. The
remaining variables receive negligible posterior support, tempting the researcher to believe that
the data-generating process is solely driven by the first variable. In contrast, flexible priors still
’identify’ all variables. As expected, mass is spread more evenly, and over larger models,3 which
results in a high share of covariates with PIP close to 0.5 and thus reflects the serious degree of noise
in the data. Note, however, that under high noise, the g-E( g

1+g |y) prior (which is data-adaptive
but not model-specific) is more prone to misidentifying variables (by PIP) than the hyper-g priors.
This result suggests that while adapting shrinkage to data quality is crucial, it is also important to
allow for model-specific adjustment of the shrinkage factor.

In addition to PIPs, the posterior model probability of the data-generating model can be of interest
to examine consistency properties in the sense of Fernández et al. (2001a). Tables 1.6 and 1.7 show
summary statistics for its posterior model probability (under setting ’A’). In line with asymptotic
consistency, more information in the data leads the hyperprior to uncover the data-generating
process with highest precision, whereas increasing noise deteriorates the selection ability of BMA
for all settings. The ratio of the posterior model probability for the data-generating process to the
one with highest PMP is given in Table 1.7. The results show that in situations described by higher
degrees of noise in the data all specifications favor a model different from the one generating the
data.

1Note that setup ’B’ is observationally equivalent to generating data from a single, complicated model.
2Note that in this setting, varying σ has an effect that is similar to varying the number of observations N . We

therefore leave N constant.
3Note that the sum of PIPs equals posterior model size. Therefore, if posterior mass concentrates on larger

models due to noise, the PIPs will not discriminate much among covariates but will exhibit high absolute values. It
is therefore more insightful to compare the relative differences in PIPs rather than their absolute values.
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While flexible priors fail to uncover the data-generating model (as do the fixed priors) the assigned
PMP for the best (and wrong) model is considerably smaller than under fixed priors. Hence,
the degree of uncertainty is reflected in the evenness of posterior mass distribution. Figures 1.2
and 1.3 exemplify the differences in PMP concentration for the 8 priors. The first figure shows the
cumulative posterior mass of the 100 best models under the four signal-to-noise settings. From these
figures and Table 1.6, it becomes evident that flexible priors uncover the data-generating model
with highest precision and concentrate most mass on this model(s) in situations characterized by
a high degree of information in the data. This means that under the flexible priors, posterior
expected shrinkage E( g

1+g |y,X) is larger than the constant factors g
1+g under the fixed priors. As

noise increases, the flexible priors distribute mass more evenly among explanatory variables which
reflects the rise in uncertainty. In contrast, fixed g priors are not capable of adjusting posterior
mass distribution to uncertainty inherent in the data. This inability to adapt limits the merits
of Bayesian model averaging under fixed g priors with respect to robust inference and predictive
ability. Figure 1.3 uses a QQ-plot to compare for PMPs under the various prior settings with
the g-RIC prior. For all data-dependent priors, differences to fixed priors increase with noise as
expected.1

Under setting ’B’, the employed models should rather be understood as approximations, while
uncovering a ’true’ model is of minor importance. The results exemplify once again the supermodel
effect behavior of fixed prior settings illustrated in Figures 1.4 and 1.5. Small degrees of noise trigger
a concentration of posterior mass under the hyper-g prior and the empirical Bayes approach. An
increase in noise is reflected in a wider spread of posterior mass among models under flexible
priors, whereas fixed priors still concentrate on a small number of models. Moreover, note how
close the hyper-g results are to the Empirical Bayes prior under both settings ’A’ and ’B’, which
are particularly striking when noise is small. This illustrates that not only both priors converge
to the same posterior results asymptotically,2 but that also lead to similar conclusions under small
samples (that are characterized by a noise component that is not too large).

Finally, we examine the robustness of the various g-prior settings via their performance in out-of-
sample prediction. Results from a prediction exercise are expected to vary considerably between
fixed and flexible prior settings, since the latter incorporate data adaptive shrinkage. Akin to Liang
et al. (2008) we randomly split the data from settings ’A’ and ’B’ into 70 estimation and 30 out-of-
sample observations. We then calculate the root mean squared error (RMSE) of the forecasts for
the 30 out-of-sample data points, averaged over 50 Monte Carlo steps. The RMSE statistics shown
in Table 1.8 are normalized with respect to forecasting results under the g-RIC prior. Thus values
below 1 indicate better predictive accuracy of the respective prior structure than under the g-RIC
prior. The top panel of Table 1.8 shows mixed results for setting ’A’. As expected, the g-RIC prior
with its focus on parsimonious models excels in nearly all signal-to-noise settings, concentrating
on a single (and luckily the correct data-generating) model. In the σ = 1/2 case, however, the
flexible priors concentrate mass even more tightly than does the g-RIC and consequently yield
better predictions in terms of RMSE. At intermediate noise levels, g-RIC outperforms the other
priors by greater margins by exploiting the comparative advantage that the data-generating process
is composed of a single model. This shows how the supermodel effect could be exploited to achieve
superior predictive performance under the following conditions: If a researcher has prior knowledge
that the data is generated by a simple model with few covariates, and if the noise component is
neither too weak such that flexible priors would outperform any fixed priors, nor too strong such

1We have omitted results from the HG-3 setting, since results are very similar to that of HG-4.
2Note that under this simulation set-up, decreasing the variance of the noise component is equivalent to increasing

the sample size at constant variance. The striking similarities of results under Empirical Bayes and hyper-g priors
therefore illustrate the asymptotic equivalence between both set-ups (cf. section 1.4.2).
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that a fixed prior setting would hardly identify the one ’true’ model as the best-performing one, then
a high g-parameter will concentrate more mass on the ’correct’ model than flexible prior settings.
In view of this conditions, the supermodel effect can be exploited best in a typical simulation set-up.
However, such an approach can be dangerous under more complex datasets, and in any case when
such peculiar prior knowledge is not given. Simulation setting ’B’ illustrates the merits of flexible
priors when the lack of ideal conditions turns the supermodel effect into a disadvantage for fixed
g-priors: The predictive performance of flexible priors dominates throughout nearly all signal-to-
noise settings. Especially the HG-3 prior and the empirical Bayes approach demonstrate superior
predictive abilities with the latter one outperforming the g-RIC prior for all signal-to-noise setups.
This contrasts with typical simulation exercises in the literature, as their data-generating processes
emanates from a parsimonious single models, which plays in favor of (large) fixed priors because of
the supermodel effect. Given their focus on large models, it is surprising how well hyper-g priors
perform in this prediction exercise. The results suggest that imposing a model prior that favors
parsimonious models yields even better predictive performance under a flexible prior.1

1.6 (Un)stable growth determinants

Emanating from the pioneering work of Sala-i-Martin et al. (2004),2 numerous studies have em-
ployed model averaging techniques in the empirics of economic growth. For comparability, we
follow this approach and investigate the effect of the prior settings from section 1.5 on inference
in a cross-country growth data set. A vast part of the empirical studies use international income
data provided by the Penn World Tables (PWT). This data base publishes GDP data adjusted
for purchasing power parities (PPP), which is essential for conducting country comparison stud-
ies. The core purpose of the PWT is collecting prices for the same or similar goods in different
countries. Gathering prices is carried out on an irregular basis with each ’generation’ of the table
complying with a different round of price collection (Johnson et al., 2009). The methodologies
employed by PWT to derive PPP-adjusted GDP data - and in particular growth rates thereof -
have been frequently criticized as being plagued by considerable measurement error. Johnson et al.
(2009) carry out a replication exercise by re-estimating selected growth equations employed in the
literature using different versions of PWT. They show that estimates vary markedly across differ-
ent versions of the PWT. In particular, growth studies using high frequency data (e.g. annual as
opposed to long run averages) are especially prone to the measurement error inherent to the PWT
methodology. Johnson et al. (2009) conclude that in order to make significant policy conclusions
empirical results should be robust to PWT revisions.

Ciccone and Jarociński (2010) investigated the impact of PWT revisions on Bayesian model aver-
aging results. They use three different versions of the Penn World Table income data (PWT 6.0,
PWT 6.1 and PWT 6.2) and show that the identification of ’robust’ determinants - as measured
by the respective PIP - varies tremendously among data revisions. Feldkircher and Zeugner (2012)
argue that this instability is partially rooted in the prior setup chosen by Ciccone and Jarociński
(2010): a uniform prior on the model space is coupled with the g-RIC prior, with the latter being
characterized by the ’supermodel effect’.

In what follows we build on this example and estimate cross-country growth regressions for an
extended set of four PWT revisions:

1Tentative results available from the authors on request.
2See also Crespo Cuaresma and Doppelhofer (2007) and Sala-i-Martin (1997) for traditional approaches to model

averaging as opposed to Fernández et al. (2001b) and Eicher et al. (2011) for Bayesian strategies.
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∆yj = α+ γyj0 + ~βsXs + ε, (1.11)

Here, ∆yj denotes the average annual growth of income per capita over the period from 1960 to
1996 for N = 75 countries, α the intercept, ε the error term, and Xs = (x1 . . .xs) a matrix whose
columns represent a subset s of explanatory variables. Initial income is denoted by yj0 and is the only
explanatory variable that changes with PWT vintages. The potential growth determinants (whose
combinations are represented by Xs) are the ones originally put forward in Sala-i-Martin et al.
(2004) and employed in Ciccone and Jarociński (2010). These 66 variables comprise measures for
factor accumulation and convergence (as implied by the Solow growth model), human capital, insti-
tutional environment, and socio-geographical determinants. The estimation is carried out for each of
the four considered PWT revisions, indexed by j ∈ {PWT 6.0,PWT 6.1,PWT 6.2 and PWT 6.3}.
Note that all of them stem from the same PWT generation and are thus based on the same raw
price data. In this setting, we examine the effect of small perturbations to income data on posterior
results under different g priors. The correlation of the dependent variable between vintages ranges
from 0.92 to 0.97 and thus the revisions can be considered as reasonably small perturbations. In
order to represent loose prior expectations about model size, all estimations are based on the Ley
and Steel (2009) binomial-beta model prior anchored at an expected model size of K/2 variables.1

We compare the stability of the posterior inclusion probabilities over revisions by the ratio of
maximum over minimum PIP for a variable: Max/Mink = max(PIP (Xj

k))/min(PIP (Xj
k)), with

k = 1, . . . , 67 and j = 1, . . . , 4 denoting the four PWT data sets. Note that for all PWT vintages,
the g-RIC prior complies with the ’benchmark’ prior put forward in Fernández et al. (2001a).
Moreover, note that in Ciccone and Jarociński (2010) the country sample - and thus the number
of observations - changes from revision to revision. Feldkircher and Zeugner (2012) show that
conditioning on the same observations throughout the revisions reduces the instability of posterior
results. We therefore opt for holding samples constant since we are interested in the part of PIP
instability that is caused by employing the fixed g-RIC prior (the benchmark prior). Table 1.10
summarizes the results. Employing a flexible prior decreases PIP variation to a great extent,
regardless of which PWT vintages are considered: The overall Max/Min ratios under a flexible
prior are 67% smaller than under the fixed g-RIC prior.

This suggests that posterior results of the fixed and flexible priors will also differ considerably in
qualitative terms. To further examine the robustness of growth determinants, Table 1.11 lists the
posterior inclusion probabilities per variable under the g-RIC and the hyper-g (UIP) prior for all
four PWT vintages. Explanatory variables are labeled ’robust’ when they exceed a PIP of 0.50.
This threshold can be motivated from a predictive stance (Barbieri and Berger, 2003) as well as
from an intuitive perspective. Under the g-RIC prior, only a proxy for human capital (primary
schooling in 1960) can be considered as robust in all four PWT vintages. Results are unstable
for regional dummy variables such as a dummy for East Asia, Tropical Area, and Latin America.
Moreover, no clear-cut results emerge on the effect of initial GDP on international differences in
income. This is particularly worrisome from the viewpoint of economic theory and casts doubts
on the results under the g-RIC setting. The hyper-g (UIP) prior, in contrast, identifies several
variables as robust. Both initial GDP and primary schooling display impressive posterior support
(PIP ≥ 90%) and their posterior coefficients are well in line with economic theory.2 Furthermore,
the regional dummy for Africa, and variables for the share of Confucian population receive robust
posterior support over all PWT revisions, which provides strong empirical evidence in the vein of

1Note that Ciccone and Jarociński (2010) have used a uniform prior on the model space. Results under the
uniform prior are available from the authors upon request. See also Feldkircher and Zeugner (2012).

2Results are available from the authors upon request.
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Johnson et al. (2009). Finally, the proxies for fertility and for Buddhism show considerable posterior
support in three out of the four PWT vintages. The robustness of regional dummy variables points
to heterogeneous growth dynamics in the examined country set.

The difference in posterior results between flexible and fixed priors is rooted in how posterior
mass is distributed among covariates and models. For the PWT data set, this can be seen best
when comparing the posterior expected model size. While a model for economic growth should
be expected to contain 3 to 5 explanatory variables according to the g-RIC prior, the posterior
model size for flexible priors lies in the range of 12 to 14 regressors. Accordingly, the corresponding
shrinkage factors of the flexible priors are considerably lower (across all revisions) than the value
implied by the fixed g-RIC prior (see the bottom of Table 1.11). These differences become even more
striking when considering the implied posterior mean for g, which is 4448 under the g-RIC compared
to 23 - 26 under the hyper-g (UIP) prior. The smaller shrinkage factors (and implied values for
g) under the flexible priors indicate noise to prevail more strongly under PWT data sets than
inherently assumed under g-RIC. With that in mind, it comes as no surprise that the flexible priors
push the PIPs of most variables towards the 50% threshold, which points to empirical evidence
neither in favor nor against their inclusion in models of economic growth. The inconclusiveness
that plagues the empirical growth literature is thus more correctly mirrored in the posterior results
of the flexible priors, whereas the benchmark prior is prone to the risk of over-fitting the PWT
data sets.

Figure 1.6 (upper left panel) illustrates the problems arising from fixed g priors in the (PWT 6.1)
data set. The concentration of posterior model probabilities under flexible priors is considerably
lower than under the g-UIP setting, and is far less than under the g-RIC setting. In view of
the discussion in section 1.3, this points to the supermodel effect severely affecting the posterior
statistics in this popular data set. This characteristic is also mirrored in the corresponding posterior
inclusion probabilities (Figure 1.6, upper right panel). Under fixed-g settings (particularly g-RIC),
the PIPs are more skewed than under flexible priors, which again illustrates that fixed-g priors
risk discriminating more among covariates than seems justified by the data at hand. Moreover,
figure 1.6 displays virtually identical results for the various hyper-g settings, which illustrates the
feature that their differing prior expectations do not have too much impact on posterior statistics.
Finally, their results are indistinguishable from the Empirical Bayes prior, which further illustrates
how quickly hyper-g and EBL prior results converge in small samples.

The above results illustrate the advantages of flexible g priors in BMA inference. However, it
is not clear whether these advantages carry over to robustness in predictive performance: On
the one hand, the instability of of fixed priors such as the g-RIC and g-UIP should deteriorate
forecast performance. On the other hand, it is a stylized fact in the forecasting literature that
parsimonious models outperform saturated models in terms of forecasting quality. It is thus not
clear a priori which prior setting excels in forecasting economic growth. We therefore conduct
a forecast evaluation in which we randomly split the observations into a training sample of 56
countries and a ’hold-out’ sample of 19 countries. The training sample is used to estimate the
models for forecasting the remaining observations of the hold-out sample. The corresponding root
mean square error (RMSE) is calculated over 30 random sample splits. Table 1.8 summarizes the
results: All flexible prior settings outperform the fixed priors g-RIC and g-UIP. In particular, the
predictive performance of the hyper-g (UIP) prior is superior to the other priors in most of the
PWT revisions.

Finally, note that the posterior expected shrinkage factor, an indicator for goodness-of-fit, did not
steadily increase from PWT 6.0 to PWT 6.3. We notice that goodness-of-fit and data quality
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need not to go hand in hand.1 However, we think a goodness-of-fit measure might be a reasonable
indicator to get a first impression about how the data revision progressed. The sharp drop of the
shrinkage factor from PWT 6.1 to PWT 6.2 might further stimulate the debate whether newer is
always better in the context of PWT revisions.2

1.7 Concluding remarks

The widespread use of Zellner’s g prior in linear BMA rests on two convenient features: it provides
closed-form solutions and reduces the complexity of prior elicitation to the scalar g. Consequently,
theoretical considerations have mostly focused on the choice of g, in particular in view of its
virtues as a penalty term for model size. This study departs from earlier literature in bringing
forward two arguments that have been overlooked so far: First, model size considerations should
be disentangled from the primary purpose of g (which is scaling coefficient covariance) and rather
be fused into the formulation of model priors. The elicitation of g should thus not interfere with
prior desiderata on model size. Second, we demonstrate that fixing g to arbitrary values may have
unintended consequences on posterior model probabilities: The higher g, the more tightly posterior
mass will concentrate on the few best-performing ’supermodels’ – regardless of model sizes, number
of observations, or signal-to-noise ratios. Ultimately, a large value for g will favor a single model,
thereby emulating model selection rather than model averaging. As previous studies predominantly
have assessed BMA performance on simulated data generated by a single model, they tended to
favor g-specifications with large values of g that effectively select the right model. However, in
empirical practice a large g runs the risk of putting to much posterior weight on a single model.
We demonstrate that the popular prior suggested by Fernández et al. (2001a) is particularly prone
to this behavior.

As it is virtually impossible to specify the ’right’ value for g under unknown variance, we propose
to put a prior distribution on this parameter instead: Such a hyperprior allows for data-adaptive
and model-specific shrinkage, thus adjusting the impact of prior beliefs to data quality. In dis-
criminating among models only as far as data quality allows, a prior on g thus offers a remedy for
the supermodel effect. In this manner, we focus on a particular hyper-g prior, whose formulation
offers three main advantages: First, it admits closed form solutions for almost any quantity of
interest, thereby facilitating implementation. Second, its hyperparameter allows for formulating
prior beliefs on coefficient variance, but without incurring the risk of unintended consequences
on posterior model mass. Third, we demonstrate that the hyper-g prior can be reconciled with
BMA consistency. We complement the existing literature on the hyper-g prior by providing addi-
tional posterior expressions that allow for fully Bayesian inference, as well as for sound numerical
implementation. Moreover, we demonstrate that its posterior statistics can be considered as a
goodness-of-fit indicator, and show why its results are closely related to those of the Empirical
Bayes g-prior.

A simulation exercise contrasts various formulations of fixed and hyper-g priors. The fixed g-priors
perform well when the data-generating process rests on a single model that is part of the candidate
model space – but so does the hyper-g prior. The virtues of flexible prior structures become
evident in more complex settings: Flexible priors outperform fixed g settings in terms of forecasting
accuracy and exhibit a more stable structure of posterior model and inclusion probabilities over
varying degrees of noise in the data.

1An increase in goodness-of-fit might be driven by stronger correlation of measurement error in both, explanatory
variables and dependent variable.

2See also Johnson et al. (2009).
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The final section illustrates these conclusions by investigating fixed and flexible priors under dif-
ferent revisions of an economic growth data set. The results demonstrate that fixing g has a
detrimental effect on the stability of posterior results. While fixed g-priors list initial income
among the most unstable growth determinants, the estimates from the flexible priors are well in
line with economic theory: Both conditional income convergence and human capital are identified
as robustly related to income growth, along with a handful of regional dummies. In contrast to
fixed settings, these results are insensitive to data revisions. Concluding, the hyper-g prior offers a
sound, fully Bayesian approach that features the virtues of prior input and predictive gains without
incurring the risk of mis-specification.
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1.A Technical appendix

1.A.1 Posterior statistics of the hyper-g prior: Further results

Joining tedious algebra with Gauss’ contiguous relations for hypergeometric functions(Abramowitz
and Stegun, 1972, p.563) allows to establish important posterior expressions of the hyper-g prior
in closed form, on top of the ones provided in section 1.4.1. It is important to note that the
posterior moments of coefficients, the shrinkage factor, and the predictive distribution all arise as
simple transformations of the posterior model likelihood in equation (1.5). Their implementation
thus bears virtually no computational cost. The following equations present the most important
posterior statistics (keeping the notation from section 1.4.1). Equation (A.1) expresses the posterior
second moment of the shrinkage factor if (R2

s ∈ (0, 1)):1

E

((
g

1 + g

)2
∣∣∣∣∣y,Xs,Ms

)
=
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(A.1)

In addition to posterior moments, the posterior distribution of coefficients βs|y,Ms can also be
established in closed form, but as ratio of two hypergeometric functions:

p(βs|y,Xs,Ms) =

∫ ∞
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Note that this expression is of close, though not perfect resemblance to a hypergeometric function
distribution of type II.2 The first two moments of this distribution are provided in section 1.4.1.

Similar algebra also allows for simplifying the predictive distribution and yields its moments in
closed form: Consider using the data (X, y) to forecast the dependent variable ŷ conditional on
’prediction’ covariates X̂. Let X be an N × k matrix, y be N × 1, while ŷ is l× 1 and X̂ l× k. The
posterior predictive distribution of ŷ is then given as a a multivariate t-distribution of dimension l
(Eklund and Karlsson, 2007, equation (A.15))3

ŷ|X̂,X, y, g,Ms ∼ tl(ȳ + sX̂β̂,Σ, N − 1)

where Σ =
(
Il + sX̂(X ′X)−1X̂ ′

) y̆′y̆

N − 1
(1− sR2

s)

1In caseR2
s = 0 (which relates in particular to the null model), the expression for (A.1) is E

((
g

1+g

)2
∣∣∣∣y,Xs,Ms

)
=

8
(ks+a)(ks+a+2)

2See Guptar and Nagar (2000) for the exact definition of the type II hypergeometric distribution.
3The slight differences with respect to Eklund and Karlsson (2007) are due to the fact that we employ an improper

prior on beta variance σ and the constant.

22



1.A Technical appendix

Here, s denotes the shrinkage factor s = g
1+g , and R2

s the (centered) R-squared of y on X. ȳ denotes
an N -dimensional vector whose elements are the arithmetic mean of y, and y̆ ≡ y− ȳ the centered
response variable. Integrating the density function of ŷ|X̂,X, y, g,Ms with respect to the shrinkage
factor yields the integrand of the following equation (after some rearrangement):

f(ŷ|X̂,X, y,Ms) =
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ds

To our knowledge, there is no closed-form solution to to the integral above, neither to its Laplace
approximation. We therefore recommend to resort to numerical integration. Nonetheless, it is
possible to obtain the predictive variance, i.e. the squared predictive standard error, as:

V ar(ŷ|y,X, X̂,Ms) =X̂V ar(β|y,Ms)X̂
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+ y̆′y̆
N−3
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)
1.A.2 Consistency of the hyper-g prior

Fernández et al. (2001a) define asymptotic ’consistency’ as follows: Consider that only Model Ms

is true, while all other models Mj 6= Ms are not true. Consistency then requires:

plim
n→∞

p(Ms|y,Xs) = 1 and plim
n→∞

p(Mj |y,Xs) = 0 ∀Mj 6= Ms

Liang et al. (2008, Appendix B) have proven the above for the hyper-g prior except for the case
where the true model Ms is the null model M0. They stop short their proof because in this case
the Bayes factor B(Mj : M0) is (Liang et al., 2008, p.423):

p(Mj |y,Xs)

p(M0|y)
≥
∫ ∞

0
(1 + g)−

kj
2 p(g)dg (A.3)

Moreover they state that if the above integral vanishes as N →∞, then consistency is ensured.
Applying the hyper-g setting transforms the right-hand side in (A.3) into the following (by a > 2):∫ ∞

0
(1 + g)−

kj
2 p(g)dg =

a− 2

2

∫ 1

0
(1 + g)−

kj+a

2 dg =
a− 2

kj + a− 2

If a = 2 +w(N) with w(N) > 0 and lim
N→∞

w(N) = 0, then the integral vanishes and thus concludes

the proof.

1.A.3 Relationship between hyper-g and Empirical Bayes prior

It is well established in Bayesian statistics that under any non-degenerate prior, Bayesian regres-
sion results asymptotically approach their maximum-likelihood equivalent with increasing sample
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size. Against this backdrop it is not surprising that the results under the Empirical Bayes prior
in section 1.5 are close to the hyper-g settings. This sections outlines why posterior model prob-
abilities under consistent hyper-g priors and the Empirical Bayes are close in small samples and
converge asymptotically. As a byproduct, this section demonstrates the asymptotic consistency of
the Empirical Bayes prior if the ’ true’ model is not the null model. The results in this section are
based on Laplace approximations1, cf. Gelfand and Dey (1994) for their asymptotic properties in
the context of Bayesian model selection.
Consider the familiar form of the Laplace approximation, where θ̂ is the maximizer of the inte-
grand’s logarithm h(θ): ∫

Θ
exp(h(θ))dθ ≈

√
2π

−h′′(θ̂)
exph(θ̂)

Consider in turn the Bayes Factor for the hyper-g prior formulation as in (1.5), between a model
with k covariates, and the null model:

BFh =
a− 2

2

∫ ∞
0
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2 dg

Letting
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)
yields the maximizer:
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(1−R2)(k + a)
− 1, 0)

where ĝ = 0 if and only if k + a ≥ R2(N − 1). Liang et al. (2008, p.421) note the similarity to the
local Empirical Bayes (EBL) estimator of g, but abstain from further investigating the issue.
The second derivative of h(g) is given as
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The Bayes factor under a hyper-g prior is thus approximately equal to:

BFh ≈ (a− 2)
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In case we have ĝ > 0, then algebraic manipulation of the expression above yields:

BFh ≈ (a−2)
√
π

√
N − 1

(N − 1− k − a)(k + a)

(
R2

(1−R2)

N − 1− k − a
k + a

)− k+a−2
2
(

(1−R2)(N − 1)

N − 1− k − a

)−N−1
2

Now consider the equivalent null-based model Bayes Factor for the EBL approach which is:

BFEBL =
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2

in case if k ≤ R2(N − 1)

1Note that due to perceived numerical difficulties, Liang et al. (2008) propose the use of a Laplace approximation
for the posterior model likelihood under the hyper-g distribution (Liang et al. (2008, equation (17))). Depending
on the data, Laplace approximations can be prone to substantial numerical inaccuracies in small samples. However,
they may be useful for the purpose of this section which is mainly interested in asymptotic results.
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Therefore, if k + a ≤ R2(N − 1):

BFh ≈ (a− 2)
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So if a→ 2,1 the hyper-g Bayes Factor is approximately equivalent to an EBL Bayes factor times
a k-based model prior (that does not depend on R2

s). Moreover, this model prior is bounded in a
relatively narrow range: Note that
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The upper bound follows from the fact that ((k + a)/k)k/2 = (1 + a
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N−1−k

2 < exp(−a
2 ). Setting k = 1 and letting N − 1 ≥ k + a + 1

performs the lower bound.2 The effect of the term in square roots actually counters the impact

of the latter term, as
√

4
N−1 ≤

√
N−1

(N−1−k−a)(k+a) ≤ 1 for k + a < N − 1. The ’model prior’ thus

results in an upweighting of models with few or many coefficients, while intermediate model sizes are
downweighted (a feature very similar to the model prior of Ley and Steel (2009)). Since the model
prior does not depend on the level of N , it will lose importance as N →∞. In the limit, therefore,
both EBL and consistent hyper-g will approach the same Bayes Factors between any model except
the null model. If the true model is not the null model, then the posterior model probabilities under
EBL will therefore approach those under a consistent hyper-g – which establishes the asymptotic
consistency of the EBL prior in the sense of Fernández et al. (2001a), provided the true model is
not the null model.

Moreover, note that even in small samples, the impact of the k-based ’model prior’ is virtually
negligible with respect to the importance of BFEBL. Thus, at least as long as R2(N − 1) > k + a,
BFh is quite close to BFEBL. And as long as the signal-to-noise ratio in the data is not too
small, BMA posterior statistics will be disproportionally based on models with large PMPs (i.e.,
models with (N − 1)R2 � k+a). Any models with large differences between BFh and BFEBL will
thus hardly affect posterior model probabilities. Finally, note that in this case models with high
PMPs will display very hypergeometric terms F ∗s � 1, which renders the posterior moments from
sectio 1.4.1 very close to their EBL equivalents. This effect explains why this paper’s results under
hyper-g and EBL are so close.

1.A.4 The shrinkage factor and goodness-of-fit

In order to demonstrate inequalities (1.9) and (1.10), consider a reformulation of the posterior
expected value of the shrinkage factor (1.7), where ps is shorthand for posterior model probability
p(Ms|y,X) of model Ms (and p0 denotes the PMP of the null model).3

E

(
g

1 + g

∣∣∣∣y,X) = ε+

2K∑
j=1

ps
N̄R2

s − θ̄s
R2
s(N̄ − θ̄s)

+ p0
2
a (A.4)

where ε =
2K∑
j=1

ps
θ̄s

F ∗sR
2
s(N̄ − θ̄s)

1Recall that any consistent hyper-g prior requires a→ 2 for N →∞.
2Note that if k = 0, BFEBL = BFh = 1.
3Note that this formulation assumes R2

s for all models other than the null model to be strictly larger than zero –
a notion we will follow throughout this section. However, the following inequalities can be easily generalized to the
case of R2

s = 0 as long as the the full model has R2
F > 0.
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Equation (A.4) can be transformed into the following:

1− E
(

g
1+g

∣∣∣y,X)+ ε− a−2
a p0 =

2K∑
j=1

ps
θ̄s(1−R2

s)

(N̄ − θ̄s)R2
s

(A.5)

The ε term is based on the expression θ̄s/F
∗
s in (1.7), whose only role is to keep E( g

1+g |X, y) non-
negative in case of a ’bad’ model, whereas it rapidly vanishes for models with higher signal-to-noise
ratios. For any setting of the hyperparameter a, ε vanishes as N → ∞ for fixed K as long as the
null model is not the single ’true’ model – but even in small samples, ε tends rapidly towards zero
as data quality increases. Using a consistent hyper-g prior such as HG-UIP, ensures that ε will
asymptotically vanish even when the true model is the null model, as in this case R2

s will vanish
with order of magnitude OT (N̄): Since F ∗s ≥ 1, the model-specific expression is bounded from
below while consistency will drive ps to zero.

Likewise, under a consistent prior the requirement that a → 2 as N̄ → ∞ will induce the term
p0(a− 2) to vanish asymptotically.

That said, in small samples with any viable signal-to-noise ratio, any models with very low PMP
will hardly affect posterior results, and hence the expression ε will vanish as soon as there exist
some models with posterior model probabilities considerably larger than p0 (which therefore must
have their F ∗s � 1).

Omitting the expression ε − a−2
a p0 from (A.5) directly leads to inequality (1.9): Define F̂s ≡

(N̄−θ̄s)R2
s

θ̄s(1−R2
s)

, then (1.9) follows from applying Jensen’s inequality to (A.5).

A similar argument applies to the demonstration of inequality (1.10). As long as K + a < N + 1,
the following will hold by Jensen’s inequality:

K2∑
s=1

ps
(

1
N̄−θ̄s

)
≥ (1− p0)2∑K2

s=1 ps
(
N̄ − θ̄s

)
where

∑K2

s=1 ps denotes the model probability-weighted sum over all models except the null model.
Multiply with N̄ and subtract (1− p0) to obtain

K2∑
s=1

ps
(

θs
N̄−θ̄s

)
≥ (1− p0)

∑K2

s=1 psθ̄s∑K2

s=1 ps
(
N̄ − θ̄s

)
Moreover, since any nested model’s R-squared R2

s cannot exceed the R-squared of the full model

R2
F , we have that 1−R2

s
R2
s
≥ 1−R2

F

R2
F

and therefore:

K2∑
s=1

ps
(1−R2

s
R2
s

θs
N̄−θ̄s

)
≥ (1− p0)

∑K2

s=1 psθ̄s∑K2

s=1 ps
(
N̄ − θ̄s

) 1−R2
F

R2
F

Now note that
∑K2

s=1 psθ̄s = E(θ̄|y,X)− p0(a− 2). Consistency lets p0(a− 2) rapidly vanish with
N →∞, which ensures that the right-hand side of this inequality is weakly larger than its version

in expected value terms E(θ̄s|y,X) ≡
∑K2

s=0 psθ̄s :
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(1− p0)

∑K2

s=1 psθ̄s∑K2

s=1 ps
(
N̄ − θ̄s

) 1−R2
F

R2
F

≥
E
(
θ̄s
∣∣y,X)

E
(
N̄ − θ̄s

∣∣y,X) 1−R2
F

R2
F

This establishes an upper bound for the left-hand side of (A.5) (recall that N̄ ≡ N − 3 and
E(θ̄s|y,X) = E(ks|y,X) + a− 2):

E
(

g
1+g

∣∣∣y,X)− ε+ a−2
a p0 ≤ 1−

E
(
θ̄s
∣∣y,X)

E
(
N̄ − θ̄s

∣∣y,X) 1−R2
F

R2
F

Under a consistent hyper-g prior, the term ε− a−2
a p0 will vanish asymptotically as N →∞, which es-

tablishes inequality (1.10). How close E
( g

1+g

∣∣y,X) comes to this upper bound is mainly determined
by the posterior variance of model size (the less variance, the closer), and by parsimoniousness of
the model priors.Note that the term ε on the left-hand side might break the inequality (1.10) in
peculiar small samples. However, this term tends to be very small: Numerical simulations of a null
hypothesis with varying N , K, a and standard deviations have yielded no single instance in which
R2
F > K+a−2

N̄
and E( g

1+g |y,X) larger than the right-hand side above. Therefore, if R2
F > K+a

N
1,

then the ε term can be safely omitted from the inequality above.

1.A.5 Proof of Proposition 1

Given (y,X), define log-likelihood of a model Mγ as `γ ≡ k
2 log(1 − s) − N−1

2 log(1 − szγ) where
s = g

1+g is shorthand for the shrinkage factor, and zγ denotes the R-squared of model Mγ . Moreover,
index models according to their rank at a given s. Denoting the model the prior model probability
of model Mγ by mγ , the PMP of the best r models is given as:

PMP ∗r =
r∑
i=1

exp(li)mi/
2K+1∑
i=1

exp(li)mi

Let Er(θ) denote the posterior average of a statistic θi weighted according to r posterior model
probabilities:

Er(θ) =

r∑
i=1

exp(li)miθi/

r∑
i=1

exp(li)mi

Moreover, write the posterior average over all models as E(θ) = E2K+1(θ). Then, to prove proposi-
tion 1, it suffices to find the conditions under which the sign of the following derivative is positive:

d logPMP ∗r
ds

= Er

(
∂`

∂s

)
− E

(
∂`

∂s

)
Lemma 1 The posterior probability of the best model PMP ∗1 has a non-negative derivative with
respect to s if k∗+ η < E(k|y,X), where E(k|y,X) represents posterior parameter size, and k∗ the
parameter size the best model; with η > 0 vanishing as N →∞, s→∞.

1Note that this threshold is just slightly higher than the expected value of R2
F under the classic null hypothesis

of no significant variance explanation by a regression model. As a rule of thumb, if the standard F-statistic for the
full model is ’significant’ by at least 20%, then the inequality above is guaranteed to hold.
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Proof Let
dPMP ∗1

ds < 0, which implies

E(k)− k∗ < (N − 1)

(
1− z∗

1− sz∗
− E

(
1− z
1− sz

))
The right-hand side could be positive or negative – although E(k) > k∗ will in may cases be
associated with a positive right-hand side. However, for constant N and s → ∞ the right hand
side vanishes rapidly which already proves one part of lemma 1.

Now that since exp(`∗r)m
∗
r ≥ exp(`i)mi ∀ i ≥ r we have that

szi
1− szi

≤
(1− s)

kr−ki
N−1 (mrmi )

2
N−1

1− szr
− 1 ∀ i ≥ r (A.6)

Therefore,
dPMP ∗1

ds < 0 implies the following inequality:

E(k)− k∗ < (N − 1)

(
1− s

s(1− sz∗)

(
E((1− s)

k∗−k
N−1 (m

∗

m )
2

N−1 − 1)

))
Whether the right-hand side is positive or negative, depends on the actual distribution of parameter
size k. Nonetheless, if N → ∞ under constant s, the N − 1 term in the exponent will dominate
the N − 1 factor in front, and the right-hand side will go to zero. Moreover, if s is a monotonically
increasing function of N , the right-hand side will vanish even more rapidly. Defining η as the
right-hand side of inequality (A.6) concludes the proof of lemma 1.

Proof of proposition 1

Let be (N − 1)
(
Er−1( 1−z

1−sz )− E( 1−z
1−sz )

)
be bounded by ηr−1. We will have dPMP ∗r

ds < 0 if and only

if

E(k)− Er(k∗) < (N − 1)

(
Er

(
1− z∗

1− sz∗

)
− E

(
1− z
1− sz

))
(A.7)

Denote posterior model probability of model Mi by pi = exp(`i)mi/
∑2K+1

j=1 exp(`j)mj . If 1−zr
1−szr ≤

Er−1( 1−z
1−sz ), then the right hand side in (A.7) will be bounded by ηr−1

If 1−zr
1−szr > Er−1( 1−z

1−sz ) then the bound ηr−1 will not hold necessarily, but:

(N − 1)

(
Er

(
1− z
1− sz

)
− E

(
1− z
1− sz

))
< (N − 1)(1− s)

2K+1∑
i=r+1

pi

(
zi

1− szi
− zr

1− szr

)
By inequality (A.6) the right hand-side is dominated by the right-hand side of the following in-
equality:

(N − 1)

(
Er

(
1− z
1− sz

)
− E

(
1− z
1− sz

))
< (N − 1)

1− s
s(1− szr)

2K+1∑
i=r+1

pi

(
(1− s)

kr−ki
N−1 (mrmi )

2
N−1 − 1

)
A similar argument as before is applied: if s → ∞ and/or N → ∞, then the right-hand side will
vanish. In case this right-hand side is greater than ηr−1, ηr might be redefined appropriately.
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1.B Charts and Tables

Uniform model priors:

Model priors adjusted to neutralize size penalty:

Figure 1.1: Illustration of the supermodel effect: sum of posterior model probabilities (PMP) for the
best 2000 models (by PMP) and posterior model size for the PWT 6.3 growth data set (see section 1.6).
Top panel shows results under uniform model priors. Bottom panel shows results under model priors
that neutralize the size penalty from the g-prior (cf. section 1.3).

29



1. CHAPTER 1

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

σσ == 1 2

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

σσ == 1

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y
● g−RIC

g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

σσ == 2.5

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

σσ == 5

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

Figure 1.2: Cumulative posterior model probabilities for the best 100 models under Setting A. Top
panel corresponds to a noise level of σ = 1/2 (left) and σ = 1 (right). Bottom panel corresponds to a
ratio of σ = 2.5 (left) and σ = 5 (right).
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Figure 1.3: QQ-plot of cumulative posterior mass for different g-priors versus that of the g-RIC setting
(Setting A, based on 50 Monte Carlo draws).

1

31



1. CHAPTER 1

sig
n

a
l-to

-n
o
ise

ra
tio

o
f
σ

=
1
/
2

sig
n

a
l-to

-n
o
ise

ra
tio

o
f
σ

=
1

g
-R

IC
g
-U

IP
g
-E

(
g

1
+
g |y

)
E

B
L

H
G

-3
H

G
-4

H
G

-R
IC

H
G

-U
IP

g
-R

IC
g
-U

IP
g
-E

(
g

1
+
g |y

)
E

B
L

H
G

-3
H

G
-4

H
G

-R
IC

H
G

-U
IP

β
1

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

β
2

0
.0

8
5

0
.1

1
4

0
.0

6
8

0
.0

5
5

0
.0

5
5

0
.0

5
9

0
.0

5
0

0
.0

5
0

0
.0

9
4

0
.1

3
2

0
.1

0
9

0
.1

1
5

0
.1

1
6

0
.1

2
4

0
.1

0
7

0
.1

0
7

(0
.0

7
2
)

(0
.0

6
9
)

(0
.0

6
7
)

(0
.0

5
8
)

(0
.0

5
5
)

(0
.0

5
8
)

(0
.0

5
1
)

(0
.0

5
1
)

(0
.1

2
5
)

(0
.1

2
8
)

(0
.1

2
7
)

(0
.1

2
8
)

(0
.1

2
7
)

(0
.1

2
8
)

(0
.1

2
7
)

(0
.1

2
7
)

β
3

0
.0

8
3

0
.1

1
2

0
.0

6
6

0
.0

5
4

0
.0

5
2

0
.0

5
6

0
.0

4
7

0
.0

4
7

0
.0

8
5

0
.1

2
5

0
.1

0
1

0
.1

0
8

0
.1

0
9

0
.1

1
7

0
.0

9
9

0
.0

9
9

(0
.0

6
7
)

(0
.0

6
1
)

(0
.0

6
4
)

(0
.0

5
5
)

(0
.0

4
6
)

(0
.0

4
9
)

(0
.0

4
3
)

(0
.0

4
3
)

(0
.0

7
3
)

(0
.0

8
4
)

(0
.0

7
8
)

(0
.0

8
1
)

(0
.0

8
0
)

(0
.0

8
3
)

(0
.0

7
7
)

(0
.0

7
7
)

β
4

0
.0

7
7

0
.1

0
6

0
.0

6
1

0
.0

5
0

0
.0

5
0

0
.0

5
4

0
.0

4
6

0
.0

4
6

0
.0

7
8

0
.1

1
7

0
.0

9
3

0
.1

0
0

0
.1

0
1

0
.1

1
0

0
.0

9
2

0
.0

9
2

(0
.0

6
5
)

(0
.0

6
4
)

(0
.0

6
2
)

(0
.0

6
0
)

(0
.0

5
9
)

(0
.0

6
0
)

(0
.0

5
7
)

(0
.0

5
7
)

(0
.0

5
7
)

(0
.0

6
8
)

(0
.0

6
2
)

(0
.0

6
3
)

(0
.0

6
3
)

(0
.0

6
5
)

(0
.0

6
0
)

(0
.0

6
0
)

β
5

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

β
6

0
.0

8
6

0
.1

1
6

0
.0

6
8

0
.0

5
5

0
.0

5
5

0
.0

6
0

0
.0

5
0

0
.0

5
0

0
.0

6
7

0
.1

0
5

0
.0

8
2

0
.0

8
9

0
.0

9
0

0
.0

9
8

0
.0

8
1

0
.0

8
1

(0
.0

5
9
)

(0
.0

6
1
)

(0
.0

5
2
)

(0
.0

4
6
)

(0
.0

4
5
)

(0
.0

4
8
)

(0
.0

4
2
)

(0
.0

4
2
)

(0
.0

2
1
)

(0
.0

3
1
)

(0
.0

2
5
)

(0
.0

2
9
)

(0
.0

2
9
)

(0
.0

3
2
)

(0
.0

2
7
)

(0
.0

2
7
)

β
7

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

β
8

0
.1

1
3

0
.1

3
6

0
.0

9
8

0
.0

8
5

0
.0

8
2

0
.0

8
6

0
.0

7
7

0
.0

7
7

0
.0

8
7

0
.1

2
9

0
.1

0
4

0
.1

1
1

0
.1

1
1

0
.1

2
1

0
.1

0
1

0
.1

0
2

(0
.1

5
3
)

(0
.1

3
2
)

(0
.1

5
6
)

(0
.1

4
9
)

(0
.1

3
8
)

(0
.1

4
1
)

(0
.1

3
5
)

(0
.1

3
5
)

(0
.0

6
1
)

(0
.0

7
5
)

(0
.0

6
8
)

(0
.0

6
9
)

(0
.0

6
8
)

(0
.0

7
1
)

(0
.0

6
5
)

(0
.0

6
5
)

β
9

0
.0

8
4

0
.1

1
4

0
.0

6
6

0
.0

5
4

0
.0

5
4

0
.0

5
8

0
.0

4
9

0
.0

4
9

0
.0

8
3

0
.1

2
5

0
.0

9
9

0
.1

0
7

0
.1

0
8

0
.1

1
7

0
.0

9
8

0
.0

9
8

(0
.0

6
6
)

(0
.0

7
0
)

(0
.0

5
8
)

(0
.0

5
5
)

(0
.0

5
4
)

(0
.0

5
7
)

(0
.0

5
1
)

(0
.0

5
1
)

(0
.0

4
9
)

(0
.0

6
6
)

(0
.0

5
7
)

(0
.0

6
5
)

(0
.0

6
4
)

(0
.0

6
8
)

(0
.0

6
0
)

(0
.0

6
0
)

β
1
0

0
.0

8
6

0
.1

1
5

0
.0

6
8

0
.0

5
6

0
.0

5
6

0
.0

6
0

0
.0

5
1

0
.0

5
1

0
.1

0
0

0
.1

4
5

0
.1

1
8

0
.1

2
6

0
.1

2
7

0
.1

3
6

0
.1

1
6

0
.1

1
6

(0
.0

8
2
)

(0
.0

7
8
)

(0
.0

7
7
)

(0
.0

6
9
)

(0
.0

6
6
)

(0
.0

6
9
)

(0
.0

6
2
)

(0
.0

6
2
)

(0
.0

8
6
)

(0
.1

0
6
)

(0
.0

9
5
)

(0
.1

0
5
)

(0
.1

0
3
)

(0
.1

0
7
)

(0
.0

9
9
)

(0
.0

9
9
)

β
1
1

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

β
1
2

0
.0

8
5

0
.1

1
5

0
.0

6
6

0
.0

5
4

0
.0

5
4

0
.0

5
9

0
.0

4
9

0
.0

5
0

0
.1

0
9

0
.1

5
1

0
.1

2
6

0
.1

3
3

0
.1

3
3

0
.1

4
2

0
.1

2
3

0
.1

2
3

(0
.0

5
4
)

(0
.0

5
6
)

(0
.0

4
8
)

(0
.0

4
3
)

(0
.0

4
2
)

(0
.0

4
4
)

(0
.0

4
0
)

(0
.0

4
0
)

(0
.1

2
2
)

(0
.1

3
4
)

(0
.1

2
8
)

(0
.1

3
1
)

(0
.1

2
9
)

(0
.1

3
1
)

(0
.1

2
6
)

(0
.1

2
6
)

β
1
3

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.9
9
2

0
.9
9
2

0
.9
9
2

0
.9
9
2

0
.9
9
2

0
.9
9
2

0
.9
9
2

0
.9
9
2

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

4
9
)

(0
.0

4
5
)

(0
.0

4
7
)

(0
.0

4
7
)

(0
.0

4
8
)

(0
.0

4
7
)

(0
.0

4
9
)

(0
.0

4
9
)

β
1
4

0
.0

7
9

0
.1

0
9

0
.0

6
3

0
.0

5
2

0
.0

5
2

0
.0

5
5

0
.0

4
7

0
.0

4
7

0
.0

9
7

0
.1

3
6

0
.1

1
2

0
.1

2
0

0
.1

2
0

0
.1

2
9

0
.1

1
1

0
.1

1
1

(0
.0

6
9
)

(0
.0

6
5
)

(0
.0

6
7
)

(0
.0

6
4
)

(0
.0

6
3
)

(0
.0

6
4
)

(0
.0

6
1
)

(0
.0

6
1
)

(0
.1

2
4
)

(0
.1

3
0
)

(0
.1

2
7
)

(0
.1

2
9
)

(0
.1

2
7
)

(0
.1

2
9
)

(0
.1

2
5
)

(0
.1

2
5
)

β
1
5

0
.0

9
3

0
.1

2
2

0
.0

7
5

0
.0

6
2

0
.0

6
2

0
.0

6
6

0
.0

5
7

0
.0

5
7

0
.1

0
1

0
.1

4
4

0
.1

1
9

0
.1

2
5

0
.1

2
6

0
.1

3
5

0
.1

1
5

0
.1

1
5

(0
.0

9
6
)

(0
.0

9
4
)

(0
.0

9
0
)

(0
.0

8
5
)

(0
.0

8
4
)

(0
.0

8
7
)

(0
.0

8
0
)

(0
.0

8
0
)

(0
.0

9
6
)

(0
.1

0
9
)

(0
.1

0
3
)

(0
.1

0
1
)

(0
.1

0
0
)

(0
.1

0
2
)

(0
.0

9
6
)

(0
.0

9
6
)

E
(
g

1
+
g |Y

)
0
.9

9
6

0
.9

9
0

0
.9

9
8

0
.9

9
9

0
.9

9
8

0
.9

9
8

0
.9

9
9

0
.9

9
9

0
.9

9
6

0
.9

9
0

0
.9

9
4

0
.9

9
3

0
.9

9
2

0
.9

9
1

0
.9

9
3

0
.9

9
3

T
a
b

le
1
.2

:
P

o
sterio

r
In

clu
sion

P
ro

b
ab

ilities
fo

r
S

ettin
g

’A
’

w
ith

sta
n

d
a
rd

d
ev

ia
tio

n
s

in
p
a
ren

th
eses.

L
eft

P
an

el
corresp

on
d

s
to

a
sign

al-to-n
oise

ratio
of
σ

=
1/2

,
righ

t
p

a
n

el
to

a
ratio

of
σ

=
1.

C
o
effi

cien
ts

co
rresp

o
n

d
in

g
to

va
ria

b
les

o
f

th
e

d
a
ta

-gen
eratin

g
m

o
d

el
are

h
igh

ligh
ted

in
b

old
in

th
e

left
colu

m
n

.
P

IP
valu

es
ex

ceed
in

g
0
.5

a
re

h
ig

h
lig

h
ted

in
b

o
ld

.
R

esu
lts

a
re

av
era

g
ed

over
5
0

M
o
n
te

C
arlo

d
raw

s.

32



1.B Charts and Tables

si
g
n

a
l-

to
-n

o
is

e
ra

ti
o

o
f
σ

=
2
.5

si
g
n

a
l-

to
-n

o
is

e
ra

ti
o

o
f
σ

=
5

g
-R

IC
g
-U

IP
g
-E

(
g

1
+
g
|y

)
E

B
L

H
G

-3
H

G
-4

H
G

-R
IC

H
G

-U
IP

g
-R

IC
g
-U

IP
g
-E

(
g

1
+
g
|y

)
E

B
L

H
G

-3
H

G
-4

H
G

-R
IC

H
G

-U
IP

β
1

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.7
9
2

0
.8
4
2

0
.9
5
5

0
.9
5
3

0
.9
4
6

0
.9
4
6

0
.8
8
4

0
.9
0
5

(0
.0

0
2
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.2

5
7
)

(0
.2

0
8
)

(0
.0

6
6
)

(0
.0

6
8
)

(0
.0

7
7
)

(0
.0

7
5
)

(0
.2

0
7
)

(0
.1

7
1
)

β
2

0
.0

8
6

0
.1

3
1

0
.3

1
7

0
.3

0
4

0
.3

0
4

0
.3

3
0

0
.2

7
6

0
.2

7
6

0
.0

3
8

0
.0

6
7

0
.5
1
2

0
.4

5
5

0
.4

4
5

0
.4

8
1

0
.3

7
0

0
.3

8
0

(0
.1

0
6
)

(0
.1

2
6
)

(0
.1

4
9
)

(0
.1

5
3
)

(0
.1

5
1
)

(0
.1

5
1
)

(0
.1

5
0
)

(0
.1

5
0
)

(0
.0

3
7
)

(0
.0

5
8
)

(0
.1

4
9
)

(0
.1

7
1
)

(0
.1

6
6
)

(0
.1

5
9
)

(0
.1

8
5
)

(0
.1

8
0
)

β
3

0
.0

9
4

0
.1

4
1

0
.3

3
1

0
.3

1
6

0
.3

1
7

0
.3

4
3

0
.2

8
9

0
.2

8
9

0
.0

5
0

0
.0

8
1

0
.5
1
4

0
.4

6
0

0
.4

5
0

0
.4

8
6

0
.3

7
6

0
.3

8
6

(0
.0

6
4
)

(0
.0

7
7
)

(0
.1

0
9
)

(0
.1

1
5
)

(0
.1

1
3
)

(0
.1

1
4
)

(0
.1

1
1
)

(0
.1

1
1
)

(0
.0

5
2
)

(0
.0

7
4
)

(0
.1

6
0
)

(0
.1

8
0
)

(0
.1

7
6
)

(0
.1

6
7
)

(0
.1

9
7
)

(0
.1

9
2
)

β
4

0
.1

0
8

0
.1

5
8

0
.3

3
9

0
.3

2
7

0
.3

2
7

0
.3

5
1

0
.3

0
0

0
.3

0
0

0
.0

4
4

0
.0

7
4

0
.5
0
3

0
.4

4
9

0
.4

3
9

0
.4

7
6

0
.3

6
6

0
.3

7
6

(0
.1

1
9
)

(0
.1

4
4
)

(0
.1

6
5
)

(0
.1

7
2
)

(0
.1

6
9
)

(0
.1

6
8
)

(0
.1

6
9
)

(0
.1

6
9
)

(0
.0

7
2
)

(0
.1

0
4
)

(0
.1

5
8
)

(0
.1

7
6
)

(0
.1

7
2
)

(0
.1

6
4
)

(0
.1

9
5
)

(0
.1

9
0
)

β
5

0
.7
9
6

0
.8
2
6

0
.8
7
1

0
.8
7
3

0
.8
7
0

0
.8
7
5

0
.8
6
5

0
.8
6
5

0
.1

8
4

0
.2

3
6

0
.6
1
7

0
.5
7
9

0
.5
6
7

0
.5
9
4

0
.4

9
7

0
.5
0
9

(0
.2

4
4
)

(0
.2

1
5
)

(0
.1

5
5
)

(0
.1

5
5
)

(0
.1

5
6
)

(0
.1

5
0
)

(0
.1

6
4
)

(0
.1

6
3
)

(0
.2

6
7
)

(0
.2

8
6
)

(0
.2

1
5
)

(0
.2

4
6
)

(0
.2

4
4
)

(0
.2

2
8
)

(0
.2

7
9
)

(0
.2

7
3
)

β
6

0
.0

6
2

0
.1

0
3

0
.2

8
2

0
.2

7
2

0
.2

7
3

0
.2

9
8

0
.2

4
5

0
.2

4
5

0
.0

4
8

0
.0

8
0

0
.5
1
5

0
.4

6
3

0
.4

5
3

0
.4

8
8

0
.3

8
0

0
.3

9
0

(0
.0

4
4
)

(0
.0

6
8
)

(0
.1

1
5
)

(0
.1

1
8
)

(0
.1

1
7
)

(0
.1

1
9
)

(0
.1

1
3
)

(0
.1

1
3
)

(0
.0

7
0
)

(0
.1

0
0
)

(0
.1

8
5
)

(0
.2

0
8
)

(0
.2

0
4
)

(0
.1

9
4
)

(0
.2

2
6
)

(0
.2

2
1
)

β
7

0
.9
9
7

0
.9
9
9

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0

0
.5
0
6

0
.5
8
5

0
.8
4
5

0
.8
2
9

0
.8
1
7

0
.8
2
9

0
.7
5
0

0
.7
6
6

(0
.0

1
4
)

(0
.0

0
5
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.3

4
2
)

(0
.3

4
0
)

(0
.1

8
3
)

(0
.2

0
8
)

(0
.2

1
2
)

(0
.1

9
5
)

(0
.2

8
4
)

(0
.2

6
8
)

β
8

0
.0

7
5

0
.1

2
1

0
.3

0
5

0
.2

9
2

0
.2

9
2

0
.3

1
7

0
.2

6
5

0
.2

6
5

0
.0

4
9

0
.0

8
0

0
.5
0
9

0
.4

6
0

0
.4

5
0

0
.4

8
6

0
.3

7
6

0
.3

8
6

(0
.0

6
5
)

(0
.0

9
5
)

(0
.1

3
6
)

(0
.1

5
1
)

(0
.1

4
9
)

(0
.1

4
9
)

(0
.1

4
8
)

(0
.1

4
8
)

(0
.0

7
5
)

(0
.0

9
8
)

(0
.1

5
7
)

(0
.1

7
2
)

(0
.1

6
9
)

(0
.1

6
0
)

(0
.1

9
4
)

(0
.1

8
8
)

β
9

0
.1

3
1

0
.1

8
7

0
.3

6
9

0
.3

5
6

0
.3

5
6

0
.3

8
0

0
.3

2
9

0
.3

3
0

0
.0

4
5

0
.0

7
7

0
.5
0
8

0
.4

5
5

0
.4

4
5

0
.4

8
2

0
.3

7
2

0
.3

8
2

(0
.1

6
1
)

(0
.1

9
9
)

(0
.2

1
7
)

(0
.2

1
9
)

(0
.2

1
6
)

(0
.2

1
3
)

(0
.2

1
8
)

(0
.2

1
8
)

(0
.0

6
1
)

(0
.0

9
4
)

(0
.1

6
5
)

(0
.1

7
6
)

(0
.1

7
3
)

(0
.1

6
5
)

(0
.1

9
8
)

(0
.1

9
2
)

β
1
0

0
.0

8
2

0
.1

2
7

0
.3

1
3

0
.3

0
2

0
.3

0
3

0
.3

2
8

0
.2

7
5

0
.2

7
5

0
.0

4
2

0
.0

7
2

0
.5
2
0

0
.4

6
5

0
.4

5
4

0
.4

9
1

0
.3

7
7

0
.3

8
8

(0
.0

8
9
)

(0
.1

1
3
)

(0
.1

4
4
)

(0
.1

5
1
)

(0
.1

4
8
)

(0
.1

4
9
)

(0
.1

4
6
)

(0
.1

4
6
)

(0
.0

4
0
)

(0
.0

5
9
)

(0
.1

4
7
)

(0
.1

6
3
)

(0
.1

5
9
)

(0
.1

5
2
)

(0
.1

8
1
)

(0
.1

7
5
)

β
1
1

0
.8
2
8

0
.8
6
9

0
.9
2
5

0
.9
2
2

0
.9
1
9

0
.9
2
4

0
.9
1
3

0
.9
1
3

0
.3

0
5

0
.3

6
9

0
.7
1
7

0
.6
8
9

0
.6
7
7

0
.6
9
9

0
.6
0
9

0
.6
2
2

(0
.2

4
0
)

(0
.2

0
5
)

(0
.1

4
1
)

(0
.1

4
6
)

(0
.1

4
7
)

(0
.1

4
1
)

(0
.1

5
6
)

(0
.1

5
6
)

(0
.3

1
6
)

(0
.3

2
3
)

(0
.2

2
2
)

(0
.2

4
6
)

(0
.2

4
6
)

(0
.2

2
9
)

(0
.2

9
4
)

(0
.2

8
5
)

β
1
2

0
.0

6
5

0
.1

0
9

0
.3

0
1

0
.2

8
8

0
.2

8
9

0
.3

1
5

0
.2

5
9

0
.2

6
0

0
.0

5
4

0
.0

9
3

0
.5
3
3

0
.4

8
0

0
.4

6
9

0
.5
0
4

0
.3

9
3

0
.4

0
4

(0
.0

3
6
)

(0
.0

5
3
)

(0
.1

0
5
)

(0
.1

0
9
)

(0
.1

0
7
)

(0
.1

1
1
)

(0
.1

0
2
)

(0
.1

0
2
)

(0
.0

6
7
)

(0
.1

0
9
)

(0
.1

7
1
)

(0
.1

9
6
)

(0
.1

9
2
)

(0
.1

8
2
)

(0
.2

1
7
)

(0
.2

1
1
)

β
1
3

0
.4

3
7

0
.5
0
4

0
.6
5
1

0
.6
4
0

0
.6
3
7

0
.6
5
3

0
.6
1
7

0
.6
1
7

0
.0

8
3

0
.1

2
9

0
.5
5
8

0
.5
1
1

0
.5

0
0

0
.5
3
2

0
.4

2
6

0
.4

3
7

(0
.3

3
2
)

(0
.3

2
2
)

(0
.2

6
1
)

(0
.2

6
8
)

(0
.2

6
7
)

(0
.2

5
8
)

(0
.2

7
7
)

(0
.2

7
7
)

(0
.1

1
9
)

(0
.1

5
1
)

(0
.1

8
9
)

(0
.2

1
6
)

(0
.2

1
2
)

(0
.2

0
0
)

(0
.2

3
9
)

(0
.2

3
3
)

β
1
4

0
.0

9
8

0
.1

4
3

0
.3

2
1

0
.3

0
9

0
.3

1
0

0
.3

3
4

0
.2

8
3

0
.2

8
3

0
.0

4
3

0
.0

7
2

0
.5
0
4

0
.4

4
9

0
.4

3
9

0
.4

7
6

0
.3

6
6

0
.3

7
5

(0
.1

2
9
)

(0
.1

4
6
)

(0
.1

5
7
)

(0
.1

6
3
)

(0
.1

6
1
)

(0
.1

5
9
)

(0
.1

6
2
)

(0
.1

6
2
)

(0
.0

5
8
)

(0
.0

8
3
)

(0
.1

6
0
)

(0
.1

7
6
)

(0
.1

7
2
)

(0
.1

6
4
)

(0
.1

9
1
)

(0
.1

8
7
)

β
1
5

0
.1

6
5

0
.2

1
2

0
.3

8
6

0
.3

7
2

0
.3

7
3

0
.3

9
6

0
.3

4
7

0
.3

4
7

0
.0

7
4

0
.1

0
9

0
.5
2
0

0
.4

7
0

0
.4

6
1

0
.4

9
6

0
.3

8
7

0
.3

9
8

(0
.1

4
7
)

(0
.1

5
6
)

(0
.1

4
8
)

(0
.1

6
0
)

(0
.1

5
8
)

(0
.1

5
6
)

(0
.1

6
1
)

(0
.1

6
1
)

(0
.1

1
4
)

(0
.1

3
1
)

(0
.1

5
5
)

(0
.1

7
5
)

(0
.1

7
1
)

(0
.1

6
2
)

(0
.1

9
5
)

(0
.1

9
1
)

E
k
∗

5
.0

2
7

5
.6

2
9

7
.7

1
1

7
.5

7
2

7
.5

6
8

7
.8

4
4

7
.2

6
0

7
.2

6
4

2
.3

5
9

2
.9

6
5

8
.8

3
0

8
.1

6
7

8
.0

1
1

8
.4

6
7

6
.9

2
8

7
.1

0
3

E
s∗

0
.9

9
6

0
.9

9
0

0
.9

4
9

0
.9

5
5

0
.9

4
7

0
.9

3
9

0
.9

5
6

0
.9

5
6

0
.9

9
6

0
.9

9
0

0
.7

8
3

0
.8

1
7

0
.7

9
5

0
.7

6
0

0
.8

5
6

0
.8

4
9

T
a
b

le
1
.3

:
P

os
te

ri
or

In
cl

u
si

on
P

ro
b

ab
il

it
ie

s
fo

r
S

et
ti

n
g

’A
’

w
it

h
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
in

p
a
re

n
th

es
es

.
L

ef
t

P
a
n

el
co

rr
es

p
o
n

d
s

to
a

si
g
n

a
l-

to
-n

o
is

e
ra

ti
o

of
σ

=
2
.5

,
ri

gh
t

p
an

el
to

a
ra

ti
o

of
σ

=
5

n
oi

se
.

C
o
effi

ci
en

ts
co

rr
es

p
o
n

d
in

g
to

va
ri

a
b

le
s

o
f

th
e

d
a
ta

-g
en

er
a
ti

n
g

m
o
d

el
a
re

h
ig

h
li

g
h
te

d
in

b
o
ld

in
th

e
le

ft
co

lu
m

n
.

P
IP

va
lu

es
ex

ce
ed

in
g

0.
5

ar
e

h
ig

h
li

gh
te

d
in

b
o
ld

.
R

es
u

lt
s

a
re

av
er

a
g
ed

ov
er

5
0

M
o
n
te

C
a
rl

o
d

ra
w

s.
*

’E
k
’

re
fe

rs
to

p
o
st

er
io

r
ex

p
ec

te
d

m
o
d

el
si

ze
E

(k
|Y

),
’E

s’
to

th
e

p
os

te
ri

or
ex

p
ec

te
d

(a
ve

ra
g
e)

sh
ri

n
ka

g
e

fa
ct

o
r
E

(
g

1
+
g
|Y

).

33



1. CHAPTER 1

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

σσ == 1 2

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

σσ == 1

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y
● g−RIC

g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

σσ == 2.5

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

σσ == 5

Modelindex

C
um

ul
at

ed
 P

os
te

rio
r 

M
od

el
 P

ro
ba

bi
lit

y

● g−RIC
g−UIP
g−E(g/(1+g)|Y)
EBL
HG−3
HG−4
HG−RIC
HG−UIP

Figure 1.4: Cumulative posterior model probabilities for the best 100 models under Setting ’B’. Top
panel corresponds to a noise level of σ = 1/2 (left) and σ = 1 (right). Bottom panel corresponds to a
ratio of σ = 2.5 (left) and σ = 5 (right).
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1.B Charts and Tables
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Figure 1.5: QQ-plot of cumulative posterior mass for different g-priors versus that of the g-RIC setting
(Setting ’B’, based on 50 Monte Carlo draws).
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1. CHAPTER 1

g-RIC g-UIP g-E( g
1+g
|y) EBL HG-3 HG-4 HG-RIC HG-UIP

σ = 1
2

Min. 0.1349 0.1279 0.1573 0.1888 0.1934 0.1809 0.2096 0.2094
Mean 0.4618 0.3725 0.5306 0.5951 0.5973 0.5758 0.6220 0.6217
Max. 0.6297 0.5106 0.7037 0.7669 0.7644 0.7461 0.7845 0.7843
St.Dev. 0.1342 0.1019 0.1482 0.1551 0.1490 0.1487 0.1484 0.1484

σ = 1

Min. 0.0539 0.0317 0.0426 0.0308 0.0320 0.0289 0.0362 0.0362
Mean 0.4433 0.3290 0.3922 0.3944 0.3932 0.3690 0.4219 0.4215
Max. 0.6115 0.4849 0.5578 0.5954 0.5922 0.5658 0.6220 0.6216
St.Dev. 0.1373 0.1138 0.1283 0.1358 0.1342 0.1293 0.1392 0.1392

σ = 2.5

Min. 0.0021 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.1201 0.1048 0.0556 0.0665 0.0660 0.0606 0.0721 0.0720
Max. 0.4609 0.3392 0.1493 0.1978 0.1968 0.1768 0.2216 0.2213
St.Dev. 0.1133 0.0834 0.0387 0.0487 0.0478 0.0441 0.0524 0.0524

σ = 5

Min. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0012 0.0023 0.0010 0.0025 0.0024 0.0021 0.0027 0.0028
Max. 0.0215 0.0324 0.0114 0.0323 0.0308 0.0254 0.0347 0.0347
St.Dev. 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051 0.0067 0.0067

Table 1.6: Summary statistics of posterior model probabilities for true model based on setting ’A’ and
50 Monte Carlo Steps. Top panel corresponds to σ = 1/2, second panel to σ = 1, third panel to σ = 2.5,
fourth panel to σ = 5.

g-RIC g-UIP g-E( g
1+g
|y) EBL HG-3 HG-4 HG-UIP HG-RIC

σ = 1
2

Min. 0.4752 0.6133 0.4704 0.5192 0.5386 0.5175 0.5695 0.5691
Mean 0.9806 0.9919 0.9807 0.9872 0.9908 0.9902 0.9914 0.9914
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1342 0.1019 0.1482 0.1551 0.1490 0.1487 0.1484 0.1484

σ = 1

Min. 0.1363 0.1115 0.1226 0.1131 0.1188 0.1158 0.1239 0.1238
Mean 0.9650 0.9552 0.9604 0.9612 0.9626 0.9604 0.9657 0.9656
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1373 0.1138 0.1283 0.1358 0.1342 0.1293 0.1392 0.1392

σ = 2.5

Min. 0.0071 0.0076 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.4683 0.5202 0.5516 0.5325 0.5331 0.5274 0.5382 0.5383
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1133 0.0834 0.0387 0.0487 0.0478 0.0441 0.0524 0.0524

σ = 5

Min. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0067 0.0173 0.0070 0.0203 0.0200 0.0147 0.0284 0.0285
Max. 0.1643 0.3744 0.0842 0.2835 0.2737 0.1685 0.4719 0.4688
St.Dev. 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051 0.0067 0.0067

Table 1.7: Ratio of posterior model probability for true model divided by the PMP of the best model
(summary statistics for setting ’A’, based on 50 Monte Carlo draws). Top panel corresponds to σ = 1/2,
second panel to σ = 1, third panel to σ = 2.5, fourth panel to σ = 5.

g-RIC g-UIP g-E( g
1+g
|y) EBL HG-3 HG-4 HG-RIC HG-UIP

σ = 1/2 - 1.00877 0.99754 0.99798 0.99793 0.99817 0.99771 0.99771
σ = 1 - 1.00347 1.00200 1.00128 1.00219 1.00315 1.00126 1.00127
σ = 2.5 - 0.99501 1.00079 1.00556 1.00320 1.00699 1.00039 1.00042
σ = 5 - 0.99034 1.00697 1.00594 1.00720 1.01958 1.01256 1.00692
σ = 1/2 - 0.99754 0.99926 0.99794 0.99948 0.99910 0.99998 0.99998
σ = 1 - 0.98166 0.97396 0.97316 0.97501 0.97398 0.97648 0.97647
σ = 2.5 - 0.98875 0.97284 0.96760 0.97580 0.97847 0.97631 0.97627
σ = 5 - 0.99578 1.00427 0.99968 1.00747 1.02216 1.01853 1.00976

Table 1.8: Root mean squared errors relative to g-RIC, averaged over 50 Monte Carlo draws of data
(y,X) and based on 30 out of forecasts over random sample splits of data under each draw. Values
below 1 indicate predictive performance that is superior to the g-RIC setting. Top panel corresponds
to setting ’A’ and bottom panel to setting ’B’.
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Figure 1.6: Estimation results for the PWT 6.1 data set from section 1.6: Top left panel shows
the cumulative posterior mass, left panel the posterior inclusion probabilities for the most important
20 variables, bottom left panel the (expected) standardized coefficients and bottom right panel these
standardized coefficients’ posterior standard deviation.

PWT 6.0 PWT 6.1 PWT 6.2 PWT 6.3

g-RIC 0.01384 0.01357 0.01123 0.01476
g-UIP 0.01359 0.01227 0.01070 0.01502

HG-UIP 0.01336 0.01199 0.01053 0.01473
HG-RIC 0.01336 0.01198 0.01054 0.01471
EBL 0.01344 0.01202 0.01061 0.01475

Table 1.9: Root mean squared errors (RMSE) based on 30 random data partitions, as described in
section 1.6. Each random sample split assigns 75% as training sample retaining 25% of the data for the
forecast evaluation.
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g=K^2 g=N hyperUIP hyperBRIC EBL

PWT 6.0 vs. 6.1 5.4655 1.7971 1.5700 1.5714 1.5580
PWT 6.0 vs. 6.2 4.0735 1.9079 1.6364 1.6336 1.6116
PWT 6.0 vs. 6.3 5.5748 2.6756 1.9654 1.9715 1.9536
PWT 6.1 vs. 6.2 1.6936 1.5184 1.3208 1.3198 1.3037
PWT 6.1 vs. 6.3 2.0679 1.9518 1.6568 1.6573 1.6484
PWT 6.2 vs. 6.3 1.7748 2.2089 1.7516 1.7468 1.7334
PWT Overall Max / Min Ratio 7.3494 3.3100 2.3961 2.3938 2.3565

Table 1.10: Average PIP Max/Min ratios: for each revision pair, these are the mean of the ratio
maximum vs. minimum PIP per variable (over all 67 variables).
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g-RIC hyper-g (UIP)
PWT Revision 6.0 6.1 6.2 6.3 6.0 6.1 6.2 6.3

East Asian Dummy 0.85 0.04 0.22 0.18 0.12 0.08 0.11 0.18
Primary Schooling in 1960 0.76 1.00 0.96 1.00 1.00 1.00 1.00 1.00
Fraction of Tropical Area 0.60 0.01 0.04 0.01 0.13 0.07 0.07 0.08
African Dummy 0.23 0.99 0.94 0.96 0.76 0.95 0.91 0.82
GDP in 1960 (log) 0.16 1.00 0.96 1.00 0.95 1.00 1.00 1.00
Latin American Dummy 0.13 0.73 0.36 0.18 0.29 0.22 0.29 0.19
Malaria Prevalence in 1960s 0.13 0.00 0.01 0.01 0.08 0.09 0.10 0.25
Population Density Coastal in 1960s 0.10 0.23 0.03 0.04 0.35 0.27 0.10 0.14
Fraction Buddhist 0.06 0.21 0.17 0.11 0.63 0.78 0.60 0.36
Spanish Colony 0.05 0.01 0.03 0.03 0.29 0.07 0.09 0.11
Higher Education 1960 0.04 0.00 0.00 0.00 0.18 0.06 0.06 0.09
Fraction Confucius 0.04 0.25 0.24 0.20 0.72 0.88 0.80 0.82
Fertility in 1960s 0.02 0.68 0.91 0.91 0.38 0.82 0.88 0.77
Nominal Government GDP Share 1960s 0.02 0.01 0.01 0.00 0.72 0.28 0.38 0.25
Primary Exports 1970 0.02 0.01 0.01 0.09 0.09 0.11 0.11 0.64
Real Exchange Rate Distortions 0.02 0.00 0.00 0.00 0.53 0.07 0.05 0.08
Life Expectancy in 1960 0.02 0.00 0.01 0.00 0.06 0.05 0.05 0.07
Fraction Population In Tropics 0.01 0.00 0.01 0.01 0.07 0.06 0.06 0.08
Openness measure 1965-74 0.01 0.05 0.03 0.09 0.29 0.35 0.24 0.60
Colony Dummy 0.01 0.00 0.00 0.00 0.09 0.07 0.05 0.08
Civil Liberties 0.01 0.00 0.00 0.00 0.14 0.06 0.05 0.06
Fraction Protestants 0.01 0.04 0.04 0.01 0.28 0.14 0.17 0.13
Absolute Latitude 0.01 0.01 0.01 0.01 0.12 0.10 0.10 0.14
Fraction Catholic 0.01 0.04 0.05 0.02 0.29 0.12 0.14 0.13
Years Open 1950-94 0.01 0.01 0.01 0.02 0.13 0.07 0.08 0.17
European Dummy 0.01 0.02 0.01 0.01 0.31 0.27 0.14 0.15
Fraction Muslim 0.01 0.19 0.09 0.05 0.43 0.78 0.58 0.56
Fraction Population Over 65 0.01 0.02 0.01 0.01 0.31 0.42 0.26 0.15
Population Growth Rate 1960-90 0.00 0.01 0.01 0.01 0.09 0.08 0.08 0.14
Fraction Hindus 0.00 0.00 0.00 0.00 0.13 0.09 0.07 0.16
Government Share of GDP in 1960s 0.00 0.01 0.00 0.00 0.12 0.18 0.08 0.14
Air Distance to Big Cities 0.00 0.01 0.01 0.03 0.11 0.09 0.11 0.10
Fraction Population Less than 15 0.00 0.01 0.01 0.01 0.11 0.09 0.08 0.10
Gov. Consumption Share 1960s 0.00 0.01 0.00 0.00 0.10 0.10 0.06 0.11
Fraction GDP in Mining 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Investment Price 0.00 0.00 0.00 0.00 0.06 0.08 0.05 0.07
Timing of Independence 0.00 0.01 0.01 0.01 0.08 0.08 0.13 0.40
Fraction Speaking Foreign Language 0.00 0.00 0.00 0.00 0.07 0.05 0.06 0.07
Ethnolinguistic Fractionalization 0.00 0.00 0.00 0.00 0.06 0.11 0.07 0.07
Population Density 1960 0.00 0.00 0.00 0.00 0.07 0.08 0.06 0.09
Defence Spending Share 0.00 0.00 0.01 0.00 0.09 0.10 0.11 0.28
Political Rights 0.00 0.00 0.00 0.00 0.10 0.06 0.05 0.08
Population in 1960 0.00 0.00 0.00 0.00 0.07 0.06 0.05 0.10
War Participation 1960-90 0.00 0.00 0.00 0.00 0.06 0.06 0.07 0.06
Tropical Climate Zone 0.00 0.01 0.01 0.01 0.07 0.09 0.12 0.12
Fraction Orthodox 0.00 0.00 0.00 0.00 0.07 0.09 0.08 0.07
Square of Inflation 1960-90 0.00 0.00 0.01 0.01 0.06 0.06 0.08 0.09
Average Inflation 1960-90 0.00 0.00 0.01 0.02 0.06 0.06 0.10 0.09
English Speaking Population 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.08
Land Area 0.00 0.00 0.00 0.00 0.15 0.18 0.09 0.11
Terms of Trade Ranking 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.07
Public Education Spending Share in GDP in 1960s 0.00 0.00 0.00 0.00 0.08 0.05 0.05 0.07
Religion Measure 0.00 0.00 0.00 0.00 0.08 0.09 0.06 0.09
Revolutions and Coups 0.00 0.00 0.00 0.00 0.07 0.07 0.07 0.25
Landlocked Country Dummy 0.00 0.01 0.00 0.02 0.10 0.09 0.06 0.24
Fraction of Land Area Near Navigable Water 0.00 0.00 0.00 0.00 0.10 0.09 0.06 0.08
Size of Economy 0.00 0.00 0.00 0.01 0.07 0.10 0.07 0.11
Public Investment Share 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Socialist Dummy 0.00 0.01 0.00 0.01 0.08 0.19 0.07 0.34
Oil Producing Country Dummy 0.00 0.00 0.00 0.00 0.06 0.05 0.06 0.07
Outward Orientation 0.00 0.00 0.00 0.01 0.07 0.05 0.05 0.07
Hydrocarbon Deposits in 1993 0.00 0.01 0.01 0.01 0.09 0.24 0.17 0.61
British Colony Dummy 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.06
Capitalism 0.00 0.00 0.00 0.00 0.06 0.10 0.06 0.36
Terms of Trade Growth in 1960s 0.00 0.00 0.00 0.00 0.07 0.05 0.05 0.07
Interior Density 0.00 0.00 0.00 0.00 0.05 0.05 0.04 0.11
Fraction Spent in War 1960-90 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.07
# Regressors 3.42 5.70 5.30 5.17 12.81 12.60 11.26 14.40
E(g/(1 + g)|Y ) 0.9998 0.9998 0.9998 0.9998 0.9594 0.9665 0.9625 0.9630

Table 1.11: Posterior inclusion probabilities over PWT revisions. Left panel corresponds to fixed
g=K2, right panel to hyper-g (UIP).
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The Impact of Data Revisions on the
Robustness of Growth Determinants
– A Note on ’Determinants of
Economic Growth. Will Data Tell?’

Co-authored with:
Martin Feldkircher, Oesterreichische Nationalbank

Abstract
Ciccone and Jarociński (2010) show that inference in Bayesian Model Averaging (BMA) can be
highly sensitive to small data perturbations. In particular they demonstrate that the importance
attributed to potential growth determinants varies tremendously over different revisions of inter-
national income data. They conclude that ’agnostic’ priors appear too sensitive for this strand of
growth empirics. In response, we show that the found instability owes much to a specific BMA
set-up: First, comparing the same countries over data revisions improves robustness. Second, much
of the remaining variation can be reduced by applying an evenly ’agnostic’, but flexible prior.

Keywords: Bayesian model averaging, Growth determinants, Zellner’s g prior, Model uncertainty.

JEL Classifications: C11, C15, E01, O47.
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2.1 Introduction

Ciccone and Jarociński (2010) present an intriguing paper that points to severe weaknesses of
Bayesian Model Averaging (BMA). In particular, they criticize the appealing use of non-informative
(’agnostic’) priors as being plagued by robustness problems. Based on the ubiquitous growth
dataset by Sala-i-Martin et al. (2004), the authors analyze the impact of data revisions employing
three different vintages of international income data provided by the Penn World Tables (PWT).
In this manner, Ciccone and Jarociński (2010) show that small data perturbations can lead to
striking differences in posterior inclusion probabilities (PIP) – i.e. the importance of a covariate in
explaining the data. The variable ’investment price’, for instance, seems very important for growth
with a PIP of 0.98 based on PWT 6.1 data, but it exhibits a mere 0.02 under PWT 6.2. Further
variables with a worrisome degree of PIP variation reported in Ciccone and Jarociński (2010) are
the fraction of Confucian population, population density in 1960, population density in coastal
areas in 1960, the fertility rate in 1960, a dummy for east Asia, a dummy for African countries and
the fraction of tropical area per country. The conclusions made in Ciccone and Jarociński (2010,
p.222) are thus rather pessimistic in that ”margins of error in international income estimates are
too large for agnostic growth empirics.”

In a replication exercise we confirm the view that results from ’agnostic’ BMA have to be interpreted
with caution. In the following sections, however, we point to two caveats to the above findings:
First, a considerable share of the PIP variation found by the authors is due to changing sample size
and composition over PWT revisions. Secondly, the remaining variation can be attributed to the
use of a ’default’ prior framework that embodies overly confident prior beliefs – this second caveat
constitutes the focus of this note. In response to Ciccone and Jarociński (2010), we show that
conditioning on the same country set through all revisions and employing an alternative, flexible
prior greatly reduces PIP instability.

2.2 Robustness under Data Revisions

Ciccone and Jarociński (2010) use three different PWT revisions in order to represent income,
and cross-check the results with World Bank data. The conditional convergence growth regression
employed is of the following form:

∆yj = α+ γyj0 + ~βsXs + ε, (1)

with ∆yj denoting the average annual growth of income per capita over the period from 1960 to
1996 for N countries, α the intercept term and Xs = (x1 . . .xs) a matrix whose columns are stacked
data for s explanatory variables and ε an error term. Initial income (yj0) and income growth (∆yj)
are the only variables that change with revisions. The remaining potential growth determinants
grouped in Xs are the ones originally put forward in Sala-i-Martin et al. (2004) and employed in
Ciccone and Jarociński (2010). These 66 variables comprise measures for factor accumulation and
convergence (as implied by the Solow growth model), human capital variables, variables measuring
political stability and socio-geographical variables. The estimation is carried out for each of the
three considered PWT revisions, indexed by j ∈ {PWT 6.0,PWT 6.1 and PWT 6.2}. In what
follows, we denote by σ2 the variance, N the total number of observations, R2

s the OLS R-squared
of model s and K the total number of available covariates.

Turning to the econometric framework, Ciccone and Jarociński (2010) use two approaches from
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2.3 The Impact of Changing Samples – Or How much Variation can be
Attributed to Africa?

the model averaging literature: The ’BACE’ methodology proposed by Sala-i-Martin et al. (2004)
as well as the popular ’benchmark’ BMA type employed by Fernández et al. (2001a). Since both
yield broadly similar results in the empirical application by Ciccone and Jarociński (2010, p.223),
we follow the purely Bayesian approach akin to Fernández et al. (2001a). This framework relies on

Zellner’s g prior for the coefficient vector ~θs|σ2 ∼ N
(
~0s, σ

2g[X ′sXs]
−1
)

with ~θs ⊂ (βs, γ).

2.3 The Impact of Changing Samples – Or How much Variation
can be Attributed to Africa?

A special feature of PWT data is that with each vintage the coverage of countries is likely to change.
For the data employed by Ciccone and Jarociński (2010), the number of countries ranges from 88
(PWT 6.0) to 79 (PWT 6.2). Ciccone and Jarociński (2010, p.230) argue in favor of keeping sample
sizes to their possible maximum, as it might be uncertain which countries may be included in future
revisions. While this might have its virtues from the perspective of a forward-looking policy-maker,
it has the potential to blur the conclusions on the robustness of the method (BMA).

A closer look at the PWT samples reveals that the countries dropped or added between revisions
are mostly African.1 In terms of growth, these were either very successful or unsuccessful countries
with respect to their regional peers. As a consequence, and recently demonstrated in Masanjala and
Papageorgiou (2008) and Crespo Cuaresma (2010), growth determinants in Africa systematically
differ in various instances and it is difficult to consider this particular set of countries as a randomly
chosen subsample of the data.

Varying Sample g = K2 g = N hyper-g

Overall Max / Min Ratio 4.8580 2.0421 1.5224
PWT 6.0 vs. PWT 6.1 2.1179 1.4123 1.2114
PWT 6.0 vs. PWT 6.2 2.5888 1.6562 1.2778
PWT 6.1 vs. PWT 6.2 3.9466 1.6634 1.3518

Common Sample g = K2* g = N* hyper-g*

Overall Max / Min Ratio 2.4217 1.7344 1.4013
PWT 6.0 vs. PWT 6.1 1.9675 1.5866 1.3260
PWT 6.0 vs. PWT 6.2 1.8357 1.5434 1.3085
PWT 6.1 vs. PWT 6.2 1.5880 1.2470 1.1451

Table 2.1: Average PIP Max/Min ratios: for each revision pair, the figures above display the mean
of the ratio maximum vs. minimum PIP per variable. The asterisk denotes the use of the common
country set.

In order to identify the sources of PIP variability, we first replicate2 the results of Ciccone and
Jarociński (2010), employing the changing PWT samples and same prior set-up: a uniform prior3

on the model space, and the ’benchmark’ coefficient prior of Fernández et al. (2001a), that is

1Precisely, PWT 6.1 includes the countries of PWT 6.2 plus Botswana, Central African Republic, Mauritania,
DR Congo (Zaire) and Papua New Guinea. PWT 6.0 includes the PWT 6.1 countries plus Liberia, Tunisia, West
Germany and Haiti.

2All computations were carried out with the R package BMS. The data and detailed instructions for replication are
available at http://bms.zeugner.eu/datarev.php.

3Note that we have omitted the model prior from the discussion since its impact seems to be rather limited as
compared to the importance of the g-prior for this application (Ciccone and Jarociński, 2010, p.226).
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g = max(K2, N). As a measure of PIP instability we calculate the max/min ratio of the posterior
inclusion probability over the three data vintages per variable and report its average (over covari-
ates) as the overall max/min ratio. The results are summarized in the first column of Table 2.1.

The first column of the top panel (’varying sample’) shows by far the greatest overall max/min ratio
(and thus PIP variation), implying that the modeling strategy of Ciccone and Jarociński (2010) is
indeed the one that is most severely plagued by instability. Furthermore, note that the amount of
PIP variation reported in the first column is outstanding for all PWT vintages. That is, the strong
variation is not driven by a single PWT vintage, but is a characteristic of the empirical framework
employed by Ciccone and Jarociński (2010).

In order to quantify the role played by the changing sample, we replicate the estimations in Cic-
cone and Jarociński (2010) for the three data revisions but condition on the same set of countries.
The first column, bottom panel (’common sample’) illustrates that conditioning on the same ob-
servations per PWT vintage reduces PIP instability by a half. This suggests that the additional
countries from PWT 6.0 and PWT 6.1 can be regarded as innovations (outliers) with the potential
to change results.

2.4 The use of Default Priors – Or is fixing Prior Beliefs always
advisable?

As alluded to before, the BMA framework used by Ciccone and Jarociński (2010) calls for eliciting
the key hyperparameter Zellner’s g. This parameter g reflects the strength of the researcher’s prior
guess on slope coefficients. Small values correspond to stronger beliefs that the regression slopes are
zero (i.e. the prior is tightened).1 By construction, the parameter g directly affects the posterior
model probability (PMP) – the weight attributed to model Ms – and thus final inference:

p(Ms|yj , X) ∝
(

1− g
1+g

) ks
2
(

1− g
1+gR

2
s

)−N−1
2

(2)

The choice of g can be crucial for the results: Consider a relatively large g (implying a large
shrinkage factor g

1+g ). As is evident from equation (2), this will not only favor parsimonious

models but also amplify any – potentially very small – differences in R2
s. The resulting distribution

of posterior model probabilities will therefore be highly concentrated on the few parsimonious
models with the very highest R2

s.

Figure 2.1 illustrates this effect by plotting cumulative PMPs based on different settings for g.
The chart demonstrates that for PWT data, larger g attributes more weight to the first-best model
relative to the remaining ones. If the data is dominated by noise, this supermodel effect (Feldkircher
and Zeugner, 2009) will skew posterior mass to concentrate on a few ’supermodels’. Consequently
it will skew the distribution of PIPs and thus amplify variations that may be due to noise. In
contrast, employing a smaller g will limit such PIP variations, as exemplified by the second column
of Table 2.1 (which uses g = N).

A remedy for the supermodel effect: Several ’default’ mechanisms have been proposed to
elicit g, the most prominent being the ’benchmark prior’ by Fernández et al. (2001a), who recom-

1Note that in principle, it would be possible to elicit individual priors for the slopes, but we follow Ciccone and
Jarociński (2010) and the bulk of the literature in centering all coefficient priors at zero.
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2.4 The use of Default Priors – Or is fixing Prior Beliefs always advisable?

mend g = max(N,K2). Still, any of these fixed mechanisms risks to set g too small or too large
with respect to the noise component in the data.

In response, Feldkircher and Zeugner (2009) propose to forgo fixed g-priors outright and to place a
prior distribution on the parameter instead:1 We follow the fairly general hyper-g prior approach
put forward by Liang et al. (2008), which belongs to the family of mixtures of g-priors. With a
(hyper-)prior on g, the prior on the coefficient vector can be interpreted as a mixture of normal
distributions with fatter tails (Ley and Steel, 2011b). Technically, employing the hyper-g prior
boils down to placing a Beta prior on the shrinkage factor g/(1+g) ∼ Beta(1, a2 −1). Choosing the
hyperparameter a accordingly allows for formulating prior beliefs on g that match popular fixed-g
settings.2

As opposed to fixing beliefs a priori, this hierarchical approach updates the prior beliefs according
to the data. In that sense employing the hyper-g prior is less prone to misalignments of data and
beliefs. Furthermore, the hyper-g prior is more flexible as it allows for model-specific gs values
(and shrinkage factors) that adjust to data quality:3 If the data is characterized by minor noise,
then posterior mass will concentrate on the true model(s) – even more than under fixed settings
with large g. Conversely, if noise dominates the data, then posterior statistics will decrease g and
PMPs under the hyper-g prior will be distributed more evenly. Even in such a case, BMA under
a large fixed g would always come up with clear-cut results (a single model and a few covariates
that obtain overwhelming support), not taking into account the small degree of data quality. The
hyper-g framework, in contrast, will then point to inconclusiveness mirrored in evenly spread PMPs
and PIPs.

The supermodel effect and PWT revisions: In their application, Ciccone and Jarociński
(2010) follow the ’benchmark’ recommendation by Fernández et al. (2001a) and set g = max(N,K2)
= (66+1)2. Note that this renders the shrinkage factor very close to unity (g/(1+g) ≈ 0.9998). We
can thus expect PMPs to become highly concentrated, and small differences in R2

s to be translated
into large differences in PMPs and PIPs. This large shrinkage factor treats the data as very
informative with respect to the prior. In fact, however, the quality of the PWT data sets turns
out to be rather poor. Using flexible g priors such as the hyper-g prior implies far smaller average
shrinkage factors of around 0.95 (Table 2.2). This suggests that in order to avoid the supermodel
effect, a fixed-g framework on PWT data should rather elicit g ≈ 19. That said, any fixed g will
always lack the flexibility of the hyper-g prior in adjusting to data quality.

In order to examine the role of the hyper-g prior in the context of growth determinants and
PWT revisions, we provide the full results in Table 2.3. The hyper-g prior results greatly reduce
the variability of PIPs over revisions for the 8 covariates mentioned before. In particular, the
investment price and population density variables as well as the tropical area dummy do not appear
to matter for growth under either revision while the African dummy seems robust. As a further
observation one might stress that under the hyper-g prior, the PIPs are much larger on average –
this results from the data inducing lower posterior shrinkage factors and therefore emphasizing less
parsimonious models than under the ’benchmark’ priors. The smaller model size penalty results

1Note that there are also other flexible prior frameworks, such as the Empirical Bayes (EB) approach. For the
sake of brevity, we have omitted the EB results in this note, since they are very similar to those under the hyper-g
prior (Feldkircher and Zeugner, 2009, Appendix).

2For our purpose, we defined the parameter a such that prior expected shrinkage matches the g/(1 + g) used in
Ciccone and Jarociński (2010). Experimenting with other parameters a produces results that are very close to the
ones reported here.

3In this note we refer to data quality by the degree of variation of the dependent variable explained by the data
at hand.
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Varying Sample g = K2 g = N hyper-g

PWT 6.0 0.9998 0.9888 0.9103
PWT 6.1 0.9998 0.9882 0.9293
PWT 6.2 0.9998 0.9875 0.9454

Common Sample g = K2* g = N* hyper-g*

PWT 6.0 0.9998 0.9875 0.9361
PWT 6.1 0.9998 0.9875 0.9476
PWT 6.2 0.9998 0.9875 0.9454

Table 2.2: Average shrinkage factors for three PWT revisions under the benchmark case g = 672,
g = 79 and the hyper-g prior (with prior expected shrinkage factor g

1+g = 672/(1 + 672)). The asterisk
denotes the use of the common country set. All results are based on a Metropolis-Hastings model
sampler as in Fernández et al. (2001a), with 80 million iterations after 20 million burn-ins.

into much larger posterior model size (≈ 25 vs. 7−9 under the Benchmark case). As a consequence,
comparing absolute PIPs across different priors is prone to misleading conclusions since the sum
of PIPs is by construction equal to the respective posterior model size – which in turn strongly
depends on the value of g.1

Consider Figure 2.1 to see how the hyper-g prior induces data-dependent shrinkage. The top
panel plots the cumulative PMP based on the PWT 6.1 vintage (varying sample composition). As
expected, the benchmark prior (g = K2) results in the by far most concentrated PMP distribution,
whereas the hyper-g prior spreads PMPs most evenly. The Figure also shows that the shrinkage
factor induced by the fixed g = N setting is still too high to match the PMP distribution of the
hyper-g prior. The bottom panel of Figure 2.1 provides the same plot for the sample of common
countries, which was already shown to induce less PIP variation. Comparing the two figures
reveals that the PMP distribution under neither fixed g prior responds substantially to the change
in samples. The only line that adjusts considerably is that of the hyper-g prior. This can be
best seen by considering the differences in PMP distributions of the hyper-g prior and the fixed
UIP (g = N) prior: while this difference is pronounced under the varying sample framework, it is
considerably smaller for the common sample data. The smaller noise component inherent in the
common sample induces the hyper-g prior to put more weight to the data relative to the prior and
thus to skew PMP mass. The fixed prior settings, in contrast, do not allow for adjusting the PMP
distribution to a change in the noise component.

To assess the degree of PIP variation for the different prior set-ups, we consider the overall max/min
figures provided in Table 2.1. For illustration, compare first the results for the original framework
with varying sample size (Table 2.1, top panel). A decrease in g (such as g = N) already lowers PIP
variation substantially, which demonstrates the supermodel effect. However, the most remarkable
reduction is achieved by the hyper-g prior, with a drop in variation of close to 70% compared to the
benchmark framework (Table 2.1, top panel, columns 1 and 3). The results for the common samples
(Table 2.1, bottom panel) yield a similar picture: The hyper-g prior greatly reduces PIP instability
in comparison to the other fixed prior settings. With respect to the prior set-up used in Ciccone
and Jarociński (2010) (Table 2.1, bottom panel, column 1), PIP variation is reduced by close to
50% – from already decreased levels due to conditioning on the same countries. Finally, Table 2.1
reveals that the minimal overall max/min ratio is achieved by employing the hyper-g prior coupled
with using identical countries over PWT vintages. That said, note that PIP variation is always
smaller with the hyper-g framework then under the popular fixed g settings. Thus, even when –

1For instance, when g →∞, all PIPs will tend to zero, thus their absolute differences will vanish.
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for data availability reasons – sample composition changes with revisions, we strongly recommend
the use of a hyper-g prior.

There is one important caveat, though: the quite low shrinkage factor induced by hyper-g not
only decreases PIP variation over data revisions, but also over covariates for a given revision.
Consequently, this implies that there are less covariates that could be identified as ’considerably
more important’ than others. As has been noted above, this is a direct result from posterior mass
being spread out more evenly over models due to an important noise component in the data. Yet
this trait may be desirable, as noisy data should not lead to the striking conclusions from the
’agnostic’ approach criticized by Ciccone and Jarociński (2010).

2.5 Conclusion

This note addresses an important issue raised by Ciccone and Jarociński (2010): inference of
(agnostic) BMA applied to growth empirics is not robust under small perturbations of international
income data. Our response demonstrates that such instability is partly due to the overconfident
’default’ g-prior framework employed by the authors. Instead, we propose to rely on the hyper-g
prior. While ’agnostic’ in the sense of Ciccone and Jarociński (2010), it adjusts to data quality
and induces smaller shrinkage factors according to the data’s considerable noise component. This
in turn renders BMA results considerably more stable over different revisions of PWT growth
data. However, reflecting poor data quality, results under hyper-g discriminate far less among
covariates. The empirical findings under a flexible prior may thus be characterized as ’robust
ambiguity’, limiting statements about the importance of growth determinants to a quite small
subset of covariates.
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Figure 2.1: Cumulative posterior model probabilities for the best 1000 models (by PMP) under
different settings for g. The lower panel displays results for the original PWT 6.1 data with 88 countries.
The upper panel shows results for the PWT 6.1 sample with observations restricted to the ’common
sample’ countries that appear in later PWT revisions (79 observations).
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Table 2.3: Posterior Inclusion Probabilities. Left panel corresponds to data set with varying number of countries,
center panel to data set with common countries over the three revisions. Right panel displays results of hyper-g BMA over
common countries. The asterisk denotes the use of the common country set. Results are based on 80 million posterior
draws after a burn-in phase of 20 million draws.

g = K2 g = K2* hyper-g*
PWT revisions 6.0 6.1 6.2 6.0 6.1 6.2 6.0 6.1 6.2
GDP in 1960 (log) 0.73 1.00 1.00 0.81 1.00 1.00 0.87 1.00 1.00
Absolute Latitude 0.04 0.03 0.03 0.06 0.02 0.03 0.38 0.26 0.29
Air Distance to Big Cities 0.05 0.43 0.05 0.07 0.09 0.05 0.34 0.29 0.30
Ethnolinguistic Fractionalization 0.12 0.03 0.04 0.02 0.05 0.04 0.24 0.34 0.28
British Colony Dummy 0.03 0.03 0.02 0.02 0.02 0.02 0.25 0.26 0.23
Fraction Buddhist 0.13 0.13 0.30 0.12 0.17 0.30 0.39 0.59 0.48
Fraction Catholic 0.04 0.02 0.07 0.13 0.06 0.07 0.58 0.39 0.45
Civil Liberties 0.03 0.02 0.02 0.07 0.04 0.02 0.40 0.30 0.24
Colony Dummy 0.04 0.09 0.02 0.12 0.05 0.02 0.36 0.25 0.24
Fraction Confucius 0.24 0.17 0.84 0.55 0.61 0.84 0.77 0.93 0.96
Population Density 1960 0.11 0.71 0.02 0.02 0.04 0.02 0.29 0.25 0.24
Population Density Coastal in 1960s 0.44 0.76 0.11 0.42 0.37 0.11 0.34 0.31 0.38
Interior Density 0.02 0.02 0.03 0.03 0.06 0.03 0.28 0.37 0.26
Population Growth Rate 1960-90 0.02 0.03 0.03 0.03 0.03 0.03 0.30 0.23 0.28
East Asian Dummy 0.79 0.75 0.33 0.54 0.46 0.33 0.55 0.37 0.32
Capitalism 0.02 0.02 0.02 0.02 0.03 0.02 0.24 0.29 0.28
English Speaking Population 0.02 0.02 0.02 0.02 0.02 0.02 0.26 0.28 0.25
European Dummy 0.03 0.04 0.07 0.07 0.08 0.07 0.46 0.50 0.36
Fertility in 1960s 0.04 0.15 0.90 0.23 0.65 0.90 0.65 0.73 0.80
Defense Spending Share 0.02 0.02 0.04 0.03 0.02 0.04 0.31 0.30 0.30
Public Education Spending Share in GDP in 1960s 0.02 0.02 0.02 0.02 0.03 0.02 0.25 0.26 0.25
Public Investment Share 0.07 0.06 0.02 0.03 0.02 0.02 0.33 0.24 0.28
Nominal Government GDP Share 1960s 0.05 0.02 0.29 0.28 0.11 0.29 0.84 0.46 0.74
Government Share of GDP in 1960s 0.08 0.04 0.05 0.09 0.13 0.05 0.31 0.53 0.34
Gov. Consumption Share 1960s 0.12 0.06 0.03 0.05 0.06 0.03 0.29 0.37 0.29
Higher Education 1960 0.07 0.02 0.03 0.14 0.03 0.03 0.60 0.25 0.27
Religion Measure 0.02 0.03 0.02 0.02 0.02 0.02 0.30 0.27 0.24
Fraction Hindus 0.05 0.02 0.03 0.03 0.03 0.03 0.37 0.40 0.33
Investment Price 0.81 0.98 0.02 0.03 0.07 0.02 0.26 0.28 0.22
Latin American Dummy 0.18 0.08 0.34 0.34 0.28 0.34 0.39 0.33 0.34
Land Area 0.02 0.02 0.02 0.04 0.05 0.02 0.49 0.32 0.29
Landlocked Country Dummy 0.02 0.09 0.03 0.03 0.05 0.03 0.31 0.32 0.24
Hydrocarbon Deposits in 1993 0.03 0.13 0.11 0.03 0.22 0.11 0.35 0.73 0.65
Life Expectancy in 1960 0.23 0.26 0.03 0.03 0.03 0.03 0.25 0.23 0.28
Fraction of Land Area Near Navigable Water 0.02 0.05 0.02 0.03 0.04 0.02 0.28 0.26 0.24
Malaria Prevalence in 1960s 0.23 0.03 0.03 0.05 0.03 0.03 0.30 0.26 0.30
Fraction GDP in Mining 0.16 0.28 0.02 0.04 0.02 0.02 0.31 0.22 0.23
Fraction Muslim 0.13 0.22 0.43 0.06 0.49 0.42 0.50 0.88 0.84
Timing of Independence 0.02 0.09 0.14 0.03 0.09 0.14 0.30 0.70 0.85
Oil Producing Country Dummy 0.02 0.02 0.02 0.02 0.02 0.02 0.23 0.22 0.23
Openness measure 1965-74 0.08 0.07 0.16 0.13 0.31 0.16 0.66 0.68 0.62
Fraction Orthodox 0.02 0.02 0.03 0.02 0.02 0.03 0.28 0.35 0.37
Fraction Speaking Foreign Language 0.10 0.04 0.07 0.04 0.03 0.07 0.28 0.26 0.34
Primary Schooling in 1960 0.81 0.99 1.00 0.98 1.00 1.00 0.99 1.00 1.00
Average Inflation 1960-90 0.02 0.02 0.06 0.02 0.03 0.06 0.24 0.25 0.24
Square of Inflation 1960-90 0.02 0.02 0.04 0.02 0.02 0.04 0.24 0.23 0.23
Political Rights 0.07 0.24 0.02 0.06 0.04 0.02 0.43 0.44 0.42
Fraction Population Less than 15 0.04 0.03 0.04 0.03 0.04 0.03 0.42 0.33 0.32
Population in 1960 0.03 0.02 0.02 0.02 0.02 0.02 0.34 0.22 0.23
Fraction Population Over 65 0.03 0.06 0.05 0.05 0.07 0.05 0.48 0.41 0.39
Primary Exports 1970 0.06 0.23 0.28 0.13 0.48 0.28 0.44 0.84 0.76
Fraction Protestants 0.05 0.02 0.07 0.14 0.06 0.07 0.53 0.37 0.44
Real Exchange Rate Distortions 0.10 0.05 0.02 0.11 0.03 0.02 0.60 0.23 0.21
Revolutions and Coups 0.04 0.03 0.03 0.03 0.02 0.03 0.27 0.32 0.34
African Dummy 0.19 0.21 0.85 0.86 0.83 0.85 0.83 0.72 0.78
Outward Orientation 0.04 0.04 0.02 0.02 0.02 0.02 0.26 0.22 0.25
Size of Economy 0.02 0.03 0.04 0.02 0.07 0.04 0.31 0.28 0.28
Socialist Dummy 0.02 0.03 0.03 0.03 0.06 0.03 0.24 0.28 0.22
Spanish Colony 0.12 0.02 0.07 0.28 0.04 0.07 0.41 0.23 0.31
Terms of Trade Growth in 1960s 0.02 0.02 0.02 0.02 0.02 0.02 0.23 0.30 0.28
Terms of Trade Ranking 0.02 0.02 0.02 0.02 0.02 0.02 0.28 0.24 0.22
Fraction of Tropical Area 0.56 0.67 0.05 0.32 0.23 0.05 0.49 0.30 0.25
Fraction Population In Tropics 0.06 0.16 0.04 0.02 0.02 0.04 0.26 0.23 0.28
Fraction Spent in War 1960-90 0.02 0.02 0.02 0.02 0.02 0.02 0.25 0.22 0.26
War Participation 1960-90 0.02 0.02 0.03 0.02 0.02 0.03 0.25 0.22 0.26
Years Open 1950-94 0.12 0.06 0.09 0.12 0.08 0.09 0.31 0.24 0.25
Tropical Climate Zone 0.02 0.03 0.04 0.02 0.04 0.04 0.23 0.36 0.44
Number of Observations 88 84 79 79 79 79 79 79 79
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Activity and Volatility

Co-authored with:
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Abstract
This chapter explores the link between the leverage of the US financial sector, of households and
of non-financial businesses, and real activity. We document that leverage is negatively correlated
with the future growth of real activity, and positively linked to the conditional volatility of future
real activity and of equity returns. The joint information in sectoral leverage series is more relevant
for predicting future real activity than the information contained in any individual leverage series.
Using in-sample regressions and out-of sample forecasts, we show that the predictive power of lever-
age is roughly comparable to that of macro and financial predictors commonly used by forecasters.
Leverage information would not have allowed to predict the ’Great Recession’ of 2008-2009 any
better than conventional macro/financial predictors.
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3.1 Introduction

In the years before the recent (2007-09) financial crisis, the leverage of many major financial in-
stitutions increased steadily, and reached unprecedented levels. The crisis revealed the fragility of
the financial sector, and of many highly indebted non-financial firms and households, and it has
triggered the sharpest global recession since the 1930s. Before the crisis, structural macro mod-
els largely abstracted from financial intermediaries, and macro forecasting models ignored balance
sheet information. The recent dramatic events require a rethinking of the role of finance for real ac-
tivity. In particular, understanding the link between balance sheet conditions and the real economy
has become a key priority.

To explore that link, this paper analyzes the predictive power of leverage for GDP, industrial
production, unemployment and physical investment (as well as for equity returns). Leverage is
defined as the ratio of an agent/sector’s assets to her net worth (assets minus debt). We use
quarterly US data (1980-2010), and consider leverage information from the Flow of Funds, for three
broad financial sectors (insurance companies, securities brokers-dealers, and commercial banks), as
well as for households and for non-financial corporate businesses. We complement that information
using the ratio of assets (at book-values) to the market value of equity, for financial corporations
included in three Dow Jones stock price indices: ’US-Insurance’, ’US-Banks’ and ’US-Financial
Services’. We estimate forecast equations for real activity and equity returns that use these 8
sectoral leverage ratios, and principal components of a set of 30 other macro-financial variables,
as predictors. Predictive performance is evaluated using both in-sample fit and (rolling) out-of-
sample forecast accuracy. As a robustness check, we apply Bayesian Model Averaging to evaluate
the impact of leverage conditional on any potential combination of controls (both in- and out-of-
sample).

Our results show that each of our 8 leverage variables is negatively related to future real activity.
This result is not driven by the recent financial crisis. The predictive power of leverage is roughly
comparable to that of standard macro-financial forecast variables. Among the 8 leverage series,
insurance sector leverage (from Flow of Funds), and the equity-market-value-based leverage measure
for banks have the highest out-of-sample predictive ability for GDP. For forecasting real activity, it
is advisable to combine the sectoral leverage information, using cross-sectional medians or principal
components, instead of using the sectoral leverages series individually as predictors. Thus, the joint
information in the sectoral leverage series is more relevant than the information contained in any
individual sectoral leverage series. However, despite the high statistical significance of leverage
(and of macro-financial factors) in the forecasting regressions, none of the variables considered here
would have helped in predicting the ’Great Recession’ of 2008-2009.

We also document that increasing leverage at a given date is associated with greater uncertainty
about future economic conditions. In particular, leverage is strongly positively related to the ab-
solute value of forecast errors for future real activity (generated by our forecast equations) and to
the CBOE equity market volatility index VIX (a measure of expected future stock price volatil-
ity, derived from option prices). Furthermore, leverage is positively related to the cross-sectional
dispersion (across forecasters) of predicted future real activity reported by the Philadelphia Fed
Survey of Professional Forecasters (SPF). The link between leverage and conditional future volatil-
ity seems consistent with recent theoretical models in which higher leverage amplifies the effect of
unanticipated macroeconomic and financial shocks on real activity and asset prices – the idea is
that higher leverage makes the economy more fragile.1

1See, e.g., Krugman (2009), Devereux and Yetman (2010) and Kollmann and Malherbe (2011) for discussions of
these mechanisms (and for detailed references).
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3.2 Leverage data

The work here contributes to key recent strands in the macro-modeling and macro-policy literatures.
Since the crisis, much effort has been devoted to the development of dynamic general equilibrium
models with financial intermediaries; e.g., Int Veld et al. (2011) and Kollmann et al. (2011);1 in
those models, leverage is a key state variable for real activity. Our goal here is to identify robust
empirical regularities about the link between leverage and real activity that can be used to evaluate
those models. In the policy arena, the development of a macroprudential supervision framework
(to be implemented by new agencies, such as the European Systemic Risk Board and the US Office
for Financial Research) has risen to top priority since the crisis. The monitoring of leverage ratios,
to issue early warning indicators of crises, is likely to be a key dimension of the new framework
(see Galati and Moessner, 2010). However, our results suggest that the use of aggregate leverage
information is unlikely to be a panacea for predicting crises.

Our results on the predictive content of leverage for real activity complement a recent study by
Adrian and Shin (2010) who argue, based on in-sample fit, that brokers-dealers (and shadow-
banking) balance sheets explain future GDP.2 We conduct a more systematic empirical exploration
of the forecasting performance of leverage than these authors, by considering balance sheets for
a larger number of sectors, using a broader set of controls, and evaluating both in-sample fit
and out-of-sample forecast accuracy. Our approach thus seems better suited for evaluating which
variables are robustly correlated with real activity. We document (inter alia) that the predictive
ability of brokers-dealers is highly sample dependent, and that the joint information contained in
sectoral leverage series is more relevant for future real activity than the information contained in
any individual series.3

Section 3.2 describes the leverage data, and Section 3.3 discusses our econometric methodology.
Sections 3.4 and 3.5 present the results, and Section 3.6 concludes.

3.2 Leverage data

We construct quarterly time series on the leverage ratios of five major sectors covered by the
US Flow of Funds (FoF); specifically, we consider three financial sectors– commercial banks (CB),
property and life insurance companies (INS), securities brokers and dealers (SBD)–as well as house-
holds (HH) and non-financial corporate businesses (BUS). For each of these sectors, the leverage
ratio is defined as: total assets/(total assets – financial liabilities). Asset and liabilities reported
in the FoF are partly measured at book values, and may thus differ from market values.4 We thus
complement the FoF leverage measures using the ratios of (book-value) assets to the market value
of equity, for financial companies included in three Dow Jones stock price indices (as reported by
Datastream): ’US-Banks’, ’US-Insurance’ and ’US-Financial Services’;5 we refer to these sectors
as BNK-MV, INS-MV and FIN-MV, respectively (where ’MV’ stands for market value); the corre-

1Other contributions include Aikman and Paustian (2006), Van den Heuvel (2008), De Walque et al. (2010),
Angeloni and Faia (2009), von Peter (2009), Cúrdia and Woodford (2009), Antipa et al. (2010), Dib (2010), Gerali
et al. (2010), Gertler and Kiyotaki (2010), and Meh and Moran (2010).

2Adrian et al. (2010) also argue that brokers-dealers leverage predicts equity and bond returns.
3Also, as mentioned above, we show that balance sheet information would have failed to predict the crisis, and

document that leverage is strongly related to the conditional variability of real activity.
4Deviations from market values are likely to be smallest when the balance sheets in a given sector are marked to

market and when assets and liabilities are short term.
5Datastream provides the aggregate market valuation of the firms included in each of these indices, as well as

the corresponding (book-value) assets. The ’US-Banks’ index includes commercial banks; ’US-Financial Services’
includes investment banks, credit card issuers, and institutions specializing in consumer loans, and thus overlaps only
partially with the FoF ’securities brokers-dealers’ (SBD) category. These indices only include the major financial
institutions, while Flow of Funds data cover all firms in a given sector.
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sponding Datastream series are available from 1980q4. (See the Appendix for detailed information
on the data.) We thus use data from 1980q4 in the subsequent analysis; our sample ends in 2010q3.

The forecast equations for real activity discussed below are estimated on rolling windows of 40
quarters; given the lag structure of the forecast regressions, the resulting (out-of-sample) forecast
evaluation period is 1993q3-2010q3. Figure 3.1 plots the eight sectoral leverage ratios over that
period. The mean FoF-based leverage ratios of households (1.2) and of non-financial corporations
(2.0) in 1993q3-2010q3 are much lower than those of the financial sectors (CB: 8.9; INS: 7.7; SBD:
27.3). The sample averages of the financial sector leverage measures based on the market value of
equity are lower than the FoF-based finance sector leverages (BNK-MV: 5.9; INS-MV: 4.0; FIN-MV:
2.6).1

Note also that securities brokers-dealers (SBD) leverage (from FoF) and the financial sector leverage
measures based on the market value of equity undergo much bigger fluctuations than the other
leverage series. SBD leverage grew very strongly until the crisis, reaching a peak of 55 in 2008q3,
and then (after the Lehman bankruptcy) collapsed to about 20. BNK-MV, INS-MV and FIN-MV
leverage likewise grew strongly, and peaked in 2009q2 (i.e. at the point in time when bank equity
prices reached their lowest values, during the recent crisis), before falling noticeably.2 By contrast,
FoF-based commercial-bank leverage has had a flat trend since about 2005, and held up well during
the crisis. This may partly reflect accounting discretion, which has allowed banks to overstate the
value of their assets in the crisis (e.g. Huizinga and Laeven, 2009).

Leverage also exhibits interesting correlations with GDP. The year-on-year (YoY) growth rate of
securities brokers-dealers leverage is positively correlated with YoY GDP growth (correlation: 0.43),
i.e. brokers-dealers leverage is pro-cylical (1993q3-2010q3). CB and INS leverage is a-cylical (cor-
relations with GDP close to zero, and statistically insignificant), while the remaining leverage
variables are strongly counter-cylical (median leverage-GDP correlation: -0.50). However, the YoY
growth of all eight leverage series is negatively correlated with future YoY GDP growth, at leads
greater than 2 quarters. We show below that a significant negative link between leverage and future
real activity can also be detected, when controlling for other macro/financial variables.

3.3 Econometric methodology

We focus on one-year-ahead forecasts for real activity and equity returns. Following Stock and
Watson (2002), we fit forecasting equations of the following form (by OLS):

Yt+4 − Yt = β0 + β1 (Yt − Yt−1) + β2Φt + β3Λt + εt+4 (1)

where Yt+4 is a measure of real activity in period t+4 (to be predicted given period t information).
One period represents one quarter in calendar time. Λt is the change of an individual sector’s log
leverage between t− 4 and t, or the median or first principal component of the (standardized) YoY
changes of the eight sectoral log leverage series.3 Φt is a vector of controls, discussed below. Note

1This partly reflects the fact that the market value of equity is generally greater than its book value. Leverage
measures based on book-value equity (also available from Datastream) are much closer to FoF-based leverage mea-
sures: 13.8, 7.5 and 14.0, respectively, for ’US-Banks’, ’US-Insurance’ and ’US-Financial Services’ (1993q3-2010q3).

2These movements of the BNK-MV, INS-MV, FIN-MV and SBD leverage measures are largely driven by the
sizable fluctuations in these sectors’ equity. BNK-MV, INS-MV, FIN-MV leverage are also highly negatively correlated
with the overall stock market (the correlation of year-on-year growth of these three leverage measures and the annual
Fama-French stock market return is about -0.7).

3We also estimated equations with forecast horizons of 1, 2, 6, 8, and 12 quarters, and found that the key results
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that, in equation (1), the quarterly first difference of real activity (Yt − Yt−1) is also included as a
regressor.1

We focus on the following measures of real activity: GDP, industrial production (IP), the unem-
ployment rate (UE) and physical investment (I).2 The future YoY changes of GDP, IP and I are
expressed as annual log growth rates (in %). The forecast equations for unemployment use as a
dependent variable the YoY change of the % unemployment rate. We also run the forecasting
regression (1) for the % YoY excess equity return (Rx), defined as the difference between the stock
market return and the T-bill return (see Appendix).

Due to the upward trends in several of the leverage series (see above), we use the YoY change in
(log) leverage as a predictor, in equation (1).3 (We also estimated forecasting regressions that use
the deviation of leverage from a moving average of lagged leverage as a predictor, or the deviation
from a linear trend fitted to lagged leverage. The results are very similar to those discussed below.)

Note that log leverage equals the difference between log assets and log equity. We thus also
considered forecast equations in which (YoY changes of) log assets and log equity are entered
separately as predictors. These specifications yield lower out-of-sample forecast accuracy than
models in which log leverage is used as a predictor. We tested whether the coefficient of log equity
equals the negative of the coefficient of log assets; for Flow of Funds data, we fail to reject that
hypothesis – this suggests that the effect of equity and of assets on future real activity can be
subsumed by leverage, consistent with regression equation (1). Hence, the subsequent analysis
focuses on leverage as a predictor.

As controls (Φt) we use the first four principal components (factors) extracted from a set of macro-
financial variables other than leverage, following Stock and Watson (2002).4 We consider a set of
30 predictors that are widely used in macroeconomic and financial forecasting: quarterly growth
rates of NIPA aggregates and price indices, quarterly asset returns etc. (all variables are properly
stationarized). See list in Appendix.5

We compute out-of-sample measures of forecast accuracy based on a rolling 40-quarter estimation
window. As our data set covers the period 1980q4-2010q3, the forecasts based on the rolling window
pertain to 1993q3-2010q3 (taking into account the lags in (1)), as mentioned above. We also report
the in-sample fit of model (1), based on a regression (non-rolling) for 1993q3-2010q3 (for each
dependent variable).

Tables 1-3 report empirical results for different variants of regression (1). Specifically, the model
variant referred to as ’Random Walk’ only includes the intercept as a regressor, i.e. β1, β2 and β3

are set at β1 = β2 = β3 = 0. The ’Just ∆Y ’ model variant also includes the first-difference of the

discussed below continue to hold for those horizons. The results are likewise robust to including leverage growth over
more than four quarters as a predictor. See discussions below.

1Also considered were models in which up to eight lags of Yt − Yt−1 and of Φt are included as regressors. The
Bayesian Information Criterion (BIC) does not favor inclusion of these lags.

2It seems interesting to run the forecasting equation for investment, as investment might be especially sensitive
to balance sheet conditions of financial intermediaries and of non-financial firms. Investment, IP, and UE growth
rates are strongly correlated with GDP growth rates, but more volatile.

3Unit root tests indicate that the 8 individual log leverage series are integrated of order one.
4We also considered specifications in which between 1 and 8 factors are used as controls; see discussion below

(and Web Appendix). The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) favor
the use of 4 factors. Models with 4 factors also have the best out-of-sample forecast performance; that performance
decreases noticeably when more factors are included (due to overfitting). We thus use 4 macro-financial control
factors in what follows. The fact that a small number of factors has best predictive power for macro variables has
been widely documented; see, e.g., Giannone et al. (2005), and Stock and Watson (2008).

5The first four principal components of these 30 variables account for 57% of the total variance.
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predicted variable (Yt − Yt−1) as a regressor. (All other model variants also include the intercept
and the first-difference of the dependent variable as regressors.) The forecast model labeled ’F’
adds the four macro-financial factors. ’F, PC-LEV’ adds the first principal component of the YoY
change of the eight sectoral (standardized) log leverage series to the ’F’ model. The ’F, MED-LEV’
model variant uses the cross-sectional median of standardized YoY changes of the eight log leverage
series as the leverage predictor instead.

Forecast model variants
Model Restrictions

Random Walk β1 = β2 = β3 = 0
Just ∆Y β2 = β3 = 0
F β3 = 0
F, PC-LEV Λt =first principal component of standardized

YoY changes in 8 sectoral log leverages
F, MED-LEV Λt =median of standardized YoY changes in 8

sectoral log leverage variables
F, MED-FoF Λt =median of standardized YoY changes in 5

sectoral log leverages from Flow of Funds
F, MED-MV Λt =median of standardized YoY changes in 3

sectoral log leverages based on equity market values
PC-LEV β2 = 0, Λt =principal component of YoY changes

in 8 sectoral log leverages
MED-LEV β2 = 0, Λt =median of standardized YoY changes

in 8 sectoral log leverage variables
CB, INS, SBD, HH, BUS, β2 = 0, Λt is the YoY change of one of the eight
INS-MV, BNK-MV, FIN-MV sectoral log leverage variables

The leverage predictor in the model ’F, MED-FoF’ is constructed as the median of YoY changes
of log book-value-based leverage measures (from Flow of Funds data). In contrast, the model
’F, MED-MV’ uses the median of YoY changes for the three market-value based leverage measures
(based on Dow Jones/Datastream data). The entries labeled ’CB’, ’INS’, etc. pertain to forecast
models that use the YoY difference of the corresponding individual sectoral leverage variable as
regressors. The Table above summarizes these different model variants.

3.3.1 Benchmarking leverage to controls: Bayesian Model Averaging

Comparing models with leverage ratios against a factor model of macro-financial data (’F’) provides
a tough benchmark for evaluating the predictive content of leverage growth. However, a compar-
ison with such a factor model risks attributing undue prominence to leverage variables, because
the factor extraction method might underweight individual macroeconomic predictors that could
outperform the leverage variables.

To address this concern, we apply Bayesian Model Averaging (BMA): Potentially, the ’true’ fore-
casting model as in (1) could be based on any linear combination of leverage variables and individual
macro-financial controls. BMA assigns each model a prior probability, which is updated to a data-
based posterior model probability (PMP) via Bayes’ theorem. These PMPs are used to construct a
weighted average of model-specific coefficients and statistics, thus effectively accounting for model
uncertainty by integrating over the model space (see Appendix).

BMA represents the importance of a variable with its Posterior Inclusion Probability (PIP). Defined
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as the sum of PMPs from all models that include a particular regressor, its PIP indicates the
empirical probability that this regressor is included in the true data-generating model. Note,
however, that the sum of PIPs is equal to the posterior weighted average of the number of included
variables (’posterior model size’), which can in turn be sensitive to model priors. We therefore
focus on the ranking and relative importance of PIPs rather than their absolute values.1

Our BMA implementation closely follows the literature standard (e.g. Stock and Watson, 2006).
Forecasting equations are estimated by Bayesian regression, and model priors incorporate a model
size penalty (see Appendix).2 Akin to the OLS forecasts, we apply BMA in-sample for the period
1993q3-2010q3, as well as for out-of-sample forecasts based on rolling estimation windows of 40
observations (similar to Faust et al., 2011).3

To assess the importance of leverage vs. the individual macro-financial controls, we compare the
forecasts from three different BMA settings: ’BMA NO-LEV’ applies BMA to just the 30 individual
macro-financial controls (omitting the leverage variables). ’BMA MED-LEV’ adds the median of
eight standardized YoY leverage growth rates as a composite indicator for leverage.4 Note that this
setting attributes the same prior importance to median leverage as to each single macro-financial
control. ’BMA 8-LEV’ evaluates all combinations of the 30 controls and the eight individual
leverage variables.5

3.4 Results: leverage as a predictor for real activity and equity
returns

Tables 3.1–3.3 show results for forecasting equation (1). Row 1 of Table 3.1 reports root mean
squared forecast errors (RMSEs) for the ’Just ∆Y ’ model variant. Henceforth, we take this model
variant as a benchmark – in Table 1, we normalize the RMSEs for the other model variants by the
RMSE of the ’Just ∆Y ’ variant (see rows 2-18). The Table also presents the relative RMSE of the
median forecasts (for GDP, IP, UE and I) reported by the Philadelphia Fed Survey of Professional
Forecasters (SPF). The left panel of Table 3.1 reports in-sample RMSEs, while the right panel
reports RMSEs of out-of-sample forecasts, based on the rolling 40-quarter estimation windows.
Throughout, the forecast evaluation period is 1993q3-2010q3.

1While PIP is often interpreted in terms of covariate ’significance’, its relationship to the p-values of OLS coeffi-
cient t-tests is not straightforward (in the multi-model case).

2We use the ’Bayesian regression’ framework for estimating individual models. For the model coefficients we
specify a Normal-conjugate prior with Zellner’s g prior, i.e. our prior expects model slopes to be zero, with a
coefficient covariance similar to that of OLS times a shrinkage parameter. The shrinkage parameter is endogenously
updated (cf. Appendix).

3Note that out-of-sample BMA would imply to evaluate more than a billion models for each of the 69 rolling
samples. As this is not computationally feasible, we resort to a well-established MCMC sampler with 2 400 000
iterations to explore the model space (cf. Appendix). For each dependent variable and out-of-sample BMA setting,
we thus evaluate 165.6 million regressions.

4A BMA version corresponding to the OLS forecast model ’PC-LEV’ was omitted for the sake of brevity.
5We use the popular binomial model prior as in Sala-i-Martin et al. (2004), imposing a size penalty tuned such

that it conforms to a chosen prior expected model size. For comparison with the OLS forecasting models, we set
the prior expected model size for all BMA variants to 5 (the number of variables in the forecasting model ’F’). For
’BMA MED-LEV’ this implies a prior inclusion probability of 5/31 for leverage, as well as for each macro-financial
variable. However, if this prior would be applied indiscriminately to ’BMA 8-LEV’, it would imply a higher joint
inclusion probability (68%) for all leverage variables than under ’BMA MED-LEV’. Therefore we down-weight the
prior on including leverage variables in ’BMA 8-LEV’ (cf. Appendix).

59



3. CHAPTER 3

3.4.1 In-sample results (forecasting equation (1))

In-sample, models with many regressors achieve the best fit (i.e. the lowest RMSEs). For GDP,
industrial production (IP), the unemployment rate (UE), and investment (I), the in-sample forecast
regressions with the four macro-financial factors (model variant labeled ’F’) generate an RMSE that
is about 25%-33% smaller than that of the benchmark ’Just ∆Y ’ model; by contrast, the macro-
financial factors do not help a great deal in predicting the excess equity return. In-sample, some
individual sectoral leverages too perform well. In particular, FIN-MV leverage stands out, with
relative RMSEs for GDP, IP, UE and I in the range 0.77-0.86. INS and SBD leverage yields relative
RMSEs of 0.9 for the excess equity returns, and of 0.94-0.96 for GDP. Also, HH leverage is helpful
in predicting the unemployment rate, while BNK-MV leverage helps predict GDP. The combined
leverage indicators (principal component and median of standardized YoY changes of sectoral log
leverages) tend to outperform the individual leverage variables, for all four real activity variables
(see ’PC-LEV’ and ’MED-LEV’ models).

Table 3.2 (left panel) reports estimated slope coefficients for leverage (as well as R2 coefficients
of the corresponding regressions), based on the (non-rolling) regressions for 1993q3-2010q3. Note
that almost all the leverage coefficients in the forecast equations for GDP, industrial production,
investment and the excess equity return are negative, while the slope coefficients for unemployment
are positive. All slope coefficients of the median and the principal component of leverage (’MED-
LEV’ and ’PC-LEV’), and of Flow of Funds insurance leverage are highly statistically significant
(for the other individual leverage variables, the slope coefficients in the GDP-regressions are likewise
mostly highly significant). We also estimated regressions in which the 8 sectoral leverage variables
are included jointly (not reported in Table). Wald tests show that, for each dependent variable,
the 8 leverages are overwhelmingly jointly significant (probability value in the range of 10−6).

Turning to the BMA results, we note that the model ’BMA NO-LEV’ produces already very
low in-sample RMSE (Table 3.1) without taking leverage into account. Including leverage entails
RMSE gains similar to the ones achieved in OLS models, and covariate statistics point as well to
considerable explanatory power of leverage: The ’BMA 8-LEV’ setting (Table 3.11) corroborates
the importance of leverage, with very high posterior probabilities for including all leverage variables
(’Joint PIP of all Leverage’). The best-performing among these leverage predictors is either FIN-
MV or SBD, depending on the variable to be forecasted. Nonetheless, the PIPs for several macro-
financial controls typically exceed those for individual leverage variables.1 However, the setting
’BMA MED-LEV’ demonstrates the advantage of combining leverage information. Table 3.1 shows
that the median of leverage growth rates is a more important predictor than all macro-financial
controls in the case of GDP, industrial production and investment (and it ranks among the top
four for stock market returns). In both BMA settings, the coefficients for leverage are negative
(positive for unemployment), and their magnitudes (Table 3.12) correspond to the OLS results
from in Table 3.2.

The in-sample evidence thus suggests that there exists a highly significant, negative link between
leverage and future real activity.

3.4.2 Out-of-sample results – rolling forecast regressions (equation (1))

Out-of-sample forecasting performance based on the rolling regressions is worse than in-sample fit
(see right panel of Table 3.1). This is especially the case for models with many regressors. The

1Among these, price indexes, interest rates, residential investment, and employment matter most. Note that
individual PIP of these variables vary somewhat according to whether ’BMA 8-LEV’ or ’BMA MED-LEV’ is used.
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out-of-sample predictive content for GDP of the model with the four macro-financial factors (model
’F’) is very close to that of the (’Just ∆Y ’) benchmark model (relative RMSE: 0.97), although the
four factors have non-negligible predictive content for unemployment (relative RMSE: 0.76).

The out-of-sample forecasts generated by the ’MED-LEV’ model variant (that uses the cross-
sectoral median of YoY sectoral leverage changes as a predictor) likewise outperform the bench-
mark model; ’MED-LEV’ also outperforms the model with four macro-financial factors (’F’), in
predicting GDP (relative RMSE: 0.90). When added to the four macro-financial factors, leverage
continues to achieve forecast improvements for GDP, as shown by the combined models ’F, PC-
LEV’ and ’F, MED-LEV’, which suggests that leverage contains information on top of established
predictors.1 The combined leverage models ’F, MED-FoF’ and ’F, MED-MV’ likewise perform well
for all four real activity variables; their RMSEs are in the same range, i.e. the performance of
book-value and market-value based predictions is roughly comparable. The model variants with
the sectoral leverages for INS and SBD (insurance; securities brokers-dealers, from the Flow of
Funds) perform marginally better than the benchmark model, but are outmatched by the four
macro-financial factors in forecasting GDP. Finally, the efficacy of professional forecasts (SPF) is
basically comparable to that of the benchmark model. None of the examined predictors help in
forecasting excess stock returns out-of-sample, with the possible exception of the INS and SBD
leverage measures.

As a further test of the out-of-sample forecasting capacity of leverage, we use the Clark and West
(2007) ’MSPE-adjusted test’ to test the null hypothesis that the RMSE of a given model is identical
to that of the benchmark model (’Just ∆Y ’); see Table 3.3. For each dependent variable, the test is
separately applied to the different alternative forecast models. For the model variants that include
the principal component or the median of YoY changes in sectoral log leverages as a predictor, the
p-values of the test are mostly below 0.05 (except for the excess equity return), which suggests that
the predictive power of joint leverage indicators is statistically significant – the same holds for the
macro-financial factors.2

We also use the Hubrich and West (2010) ’max-t-stat’ test to test the joint null hypothesis that all
of the eight models that include a single sectoral leverage variable (’CB’, ’INS’, . . . ,’FIN-MV’) have
the same predictive content as the ’Just ∆Y ’ benchmark model. This test is separately applied for
each of the predicted variables. The p-values for GDP, industrial production, the unemployment
rate, investment and the excess equity return are 0.026, 0.019, 0.065, 0.035 and 0.068, respectively.
These low p-values too suggest that the predictive power of the sectoral leverage information is
statistically significant.

Table 3.1 indicates that, out of sample, the BMA set-up without leverage variables (’BMA NO-
LEV’) performs less well than the ’Just ∆Y ’ model in terms of RMSE. The gains from adding lever-
age (’BMA MED-LEV’, ’BMA 8-LEV’) are at most marginal. This comparatively poor forecasting
performance of BMA conforms to literature findings (Stock and Watson 2006). Nonetheless, aver-
age posterior inclusion probabilities consistently rank the median of leverage growth rates among
the three most important predictors (Table 3.14). Likewise the 8 individual leverage variables

1That result continues to hold when each of the individual macro-financial variables is used as a predictor
(instead of principal components); use of individual macro-financial variables worsens RMSEs, but leverage remains
a significantly negative predictor of future real activity growth.

2We also used the Clark and West (2007) test to compare models that use the four macro-financial factors and
leverage as predictors, against the ’F’ model. Tests of model ’F, MED-LEV’ vs. ’F’ yield p-values 0.08, 0.01, 0.09,
0.01 and 0.65, respectively, for GDP, IP, UE, I and Rx. Thus, joint leverage information has statistically significant
predictive value added (for real activity), on top of the macro-financial factors. By contrast, individual sectoral
leverage series generally yield no significant predictive improvement, when added to the macro-financial factors. (See
Web Appendix for detailed results.)
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display high joint PIP, with financial book-value leverage indicators scoring well (Table 3.13).

The rolling regressions again show a negative link between leverage and future real activity. For
each model that includes leverage as a regressor, Table 3.2 (right panel) reports the fraction of
rolling 40-quarter estimation windows in which the estimated leverage coefficient is negative and
statistically significant at the 10% level (as well as the fraction of rolling samples in which the slope
coefficient is significant, irrespective of sign; see figures in parentheses). In the forecast equations
for GDP, industrial production and investment, most slope coefficients of leverage are negative and
statistically significant (consistent with this, most leverage coefficients in the forecast equations for
unemployment are positive). The median of YoY leverage growth rates (model ’MED-LEV’) as
well as their principal component (model ’PC-LEV’) both feature a negatively significant coefficient
(positive for unemployment) for the vast majority of samples.1

Figure 3.2 plots standardized regression coefficients of leverage and their p-values, across the rolling
estimation windows, for the GDP forecast equations. For most of the sectoral leverage variables,
the estimated slope coefficients are negative, across all windows. Hence, the empirical finding that
leverage is negatively related to future real activity is not sample dependent – in particular, this
result is not driven by the financial crisis. However, none of the sectoral leverage variables are
highly significant across all estimation windows. Note, for example, that the slope coefficient of
securities brokers-dealers (SBD) leverage was significant at the beginning and end of the sample,
but insignificant (and close to zero) in the middle of the sample. However, jointly the eight sectoral
leverage variables are highly significant predictors – and that in each of the estimation windows
(this is shown by Wald tests not reported here). This again suggests that the joint information
contained in the eight sectoral leverage series is more relevant for predicting future real activity
than the information contained in any individual leverage series.

However, despite the strong (joint) significance of the leverage variables, these variables would not
have allowed to predict the 2008-2009 ’Great Recession’ better than conventional predictors. This
is shown in Figure 3.3, which plots the GDP forecasts (rolling window based) generated by the
model with the four macro-financial factors (’F’), and by the model with these four factors and the
median of leverage growth rates (’F, MED-LEV’). Both models fail to predict the dramatic fall in
GDP during the recession – in fact, both models yield essentially the same predictions for GDP,
for 2008-2009. Figure 3.3 reveals that the overall RMSE reduction produced by using leverage
information mainly reflects smaller forecast errors made during the early 2000s (after the collapse
of the dotcom bubble). The forecasts from BMA point to the same conclusion: Including leverage
in BMA improves forecasts marginally during the early 2000s, but both ’BMA NO-LEV’ and ’BMA
MED-LEV’ (Figures 3.6–3.7) miss the recession and subsequent recovery by a wide margin. The
striking difference between (PC)OLS and BMA forecasts is that the least squares predictions times
the initial growth slump well, but then overshoots (particularly because of the importance of the
lagged growth term in (1)), whereas the BMA forecast during the crisis period is determined by the
lag indicator (leverage affects the BMA forecast less than the least squares forecast). Both variants,
however, fail at gauging the depth and timing of the recession and the scale of recovery. This is
partly due to the fact that leverage indicators followed through on the deleveraging process after
2009, whereas the macro-financial control factors did not indicate a massive turnaround ahead of
2008.

1When controlling for the macro-financial factors (models ’F, MED-LEV’ and ’F, PC-LEV’), the leverage coeffi-
cient remains significantly negative for a majority of rolling samples (for each real activity variable).
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3.4.3 Robustness: lag structure, non-linearities

The discussion so far has focused on forecast models that use past year-on-year changes of leverage
as a predictor of real activity. Due to the sustained buildup of leverage before the crisis, it seems
interesting to also consider (past) leverage growth over a period longer than one year, as a predictor
of future real activity. We experimented with model variants in which leverage growth over 6, 8 and
12 quarters is used as a predictor–those variants have lower predictive accuracy than the baseline
models (with YoY leverage growth). However, the link between past leverage growth and future
real activity remains negative and highly significant. Tables 3.4 and 3.5 show results for a model
variant in which 8-quarter leverage growth is used as a predictor.

We also considered forecast equations that use, as predictors, past changes of real activity over
longer lags (Yt−Yt−s for s > 1) and macro-financial factors (Φt) based on changes of variables over
more than one quarter.1 These alternative specifications confirm our results about leverage; in fact,
leverage emerges as a slightly more significant negative predictor than in the baseline models. The
Web Appendix also reports results for forecast regressions that predict changes of real activity at
a longer horizon (than the 4-quarter horizon considered so far). Again, the negative link between
leverage and future real activity remains (but it is weaker, the longer the horizon).2 A VAR analysis
likewise confirms this finding: positive innovations to leverage trigger a prolonged decrease in GDP
growth (see Web Appendix).

Furthermore, it seems interesting to investigate whether there are non-linearities and asymmetries
in the link between leverage and (future) real activity. We thus consider the following extension of
equation (1):

Yt+4 − Yt = β0 + β1 (Yt − Yt−1) + β2Φt + β3Λt + β4f(Λt) + εt+4 (2)

where f(Λt) represents a non-linear function of the (year-on-year) leverage measure Λt. We use
f(Λt) = max(0,Λt), to allow responses to differ across positive and negative (YoY) leverage changes
(Kilian and Vigfusson, 2009); we also consider f(Λt) = (Λt)

2, in order to test for a disproportionate
impact of large swings in leverage. As shown in Tables 3.6–3.8, the augmented models exhibit
considerably worse out-of-sample forecasting performance. However, the link between future real
activity growth and leverage growth Λt remain negative and significant. By contrast, the coefficients
for the asymmetry terms are rarely significant and their signs show no consistent pattern. We also
allowed for non-linear effects of leverage changes over lags greater than one year. Again, we find
no support for significant non-linearities. Furthermore, we tested for multiplicative interactions
between leverage and the other regressors. These interactions terms are rarely significant, and
they markedly reduce out-of sample forecast performance (but leverage growth remains strongly
negatively significant as a predictor of future real activity growth). See the Web Appendix for the
detailed sensitivity and robustness results.

In summary, the in-sample and out-of-sample results suggest very clearly that leverage is a statis-
tically significant negative predictor for future real activity growth. However, quantitatively, the

1Specifically, the quarterly growth rates and returns used in the construction of the factors (see right-most column
in Panel (c) of Appendix) were replaced by growth rates and returns over s > 1 quarters.

2As mentioned above, we also ran forecast regressions that include leverage and between 1 and 8 macro-financial
principal components (factors) as predictors (NB the specifications above use 4 factors). The highly statistically
significant negative link between leverage and future real activity holds irrespective of the number of included macro-
financial control factors–the slope coefficients of leverage and their p-values are very stable when the number of factors
is changed. This holds both for regressions over the whole sample periods, and for the 40-quarter rolling estimation
windows. (See Web Appendix.)
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effect of using leverage as a predictor is modest – leverage information would not have generated an
’early warning’ of the 2008-2009 recession any better than conventional macro-financial predictors.

The negative relation between leverage and future real activity growth seems broadly consistent (at
least qualitatively) with the predictions of recent structural macro models with financial intermedi-
aries.1 Theoretical research also suggests that leverage might matter for the conditional volatility
of future real activity and returns: essentially, an increase in leverage today should amplify the
effect of future shocks.2 This would imply a positive link between leverage and uncertainty about
future economic conditions. The next Section documents that such a link exists in the data – and
that it is powerful.3

3.5 Leverage and the conditional variability of real activity and
equity returns

We evaluate the link between the date t YoY change in log leverage and the following three measures
of uncertainty about future economic conditions:

i The absolute value of date t+4 forecast errors (in %) implied by the date t forecasts generated
by the forecast models discussed in the previous Section.

ii (ii) The CBOE equity volatility index (VIX) at the end of period t – VIX is an estimate of
the future volatility of stock prices (inferred from options prices).

iii (iii) The measure of dispersion (in %), across forecasters, of date t forecasts for real activ-
ity growth between t and t + 4, reported by the Philadelphia Fed Survey of Professional
Forecasters (SPF).4

Figure 3.4 presents scatter plots of the three measures of conditional future volatility/dispersion
against the principal component of the changes in log sectoral leverage between t−4 and t (observed
at t). (The sample period (t) is 1992q3-2009q3.) Figure 3.5 plots time series of these variables (using
the same timing convention). The absolute forecast errors in Figures 3.4–3.5 pertain to GDP; these
errors are rolling-window-based, and were generated using the forecast model referred to as ’F’
in the previous Section (i.e. the four macro-financial factors are used as predictors). (Plots for
errors generated by the other forecast models, and for the other predicted real activity measures
are very similar.) Figures 3.4–3.5 show a clear positive link between leverage information at t and

1See, e.g., the models in Aikman and Paustian (2006), Meh and Moran (2010) and Kollmann et al. (2011). These
models predict that a negative transitory shock to private sector total factor productivity lowers bank leverage. Such
a shock also lowers GDP, on impact, but subsequently GDP is predicted to revert to its pre-shock level; hence,
leverage is negatively correlated with future GDP growth. (The mechanisms that induce the fall in leverage differ
across models; e.g., in Kollmann et al. (2011) it is due to the fact that household savings and the supply of deposit
decrease, which leads banks to finance a larger share of their asset holdings by raising equity). An exogenous negative
shock to bank capital is likewise predicted to decrease future output. We leave for future research a detailed empirical
evaluation of this new class of models.

2See, e.g., Krugman (2009), Devereux and Yetman (2010), and Kollmann and Malherbe (2011) for discussions of
mechanisms through which leverage may amplify the effect of shocks.

3Previous research has documented that the conditional volatility of real activity is time-varying (e.g., Giannone
et al. (2008), and Frale and Veredas (2009)). Our results about the link between leverage and future conditional
volatility of real activity are novel, to the best of our knowledge.

4The SPF dispersion measure is the % difference between the 75th and 25th percentiles of the cross-sections of
forecasts.
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the measures of future conditional variability (and the dispersion of forecasts made at t). The link
is very pronounced during the crisis – but it is also clearly present in the pre-crisis period.

Tables 3.9 and 3.10 provide regression evidence on the link between leverage and conditional future
volatility/dispersion. Table 3.9 regresses absolute date t + 4 forecast errors for each of our five
dependent variables on (annual YoY changes of) our 8 sectoral log leverage variables observed at
t (see first 8 rows of Table); we also regress absolute forecasts errors on all 8 sectoral leverage
series jointly, and on the principal component and median value of (YoY changes of) sectoral log
leverages. Table 3.9 furthermore shows results that obtain when the four macro-financial factors
are added as regressors. In Table 10, the cross-sectional dispersion of date t SPF forecasts (for
GDP, industrial production, the unemployment rate and investment; see Columns (1)-(4)), as well
as the VIX at t (Column 5) are regressed on the regressors used in Table 3.9.

In almost all regressions, the slope coefficients of leverage are positive and highly statistically
significant.1 This result confirms the existence of a powerful positive link between leverage and
conditional future variability/dispersion. That link is particularly strong for the leverage factor
and median leverage. Each of these two leverage measures alone explains between 20% and 35% of
the variances of the absolute GDP forecast errors, of SPF cross-sectional GDP forecast dispersion,
and of VIX (see R2 coefficients).2 The four macro-financial factors are likewise related to future
conditional volatility – but less strongly than leverage (lower R2s). Furthermore, the principal
component and median of the sectoral leverage measures remain highly significant when the four
macro-financial factors are added as predictors.

Table 3.15 provides BMA evidence on the link between absolute forecast errors and the median of
leverage growth rates as well as the 30 macro-financial controls. The results suggest that several of
the macro-financial controls have an impact on conditional output variability that is comparable to
that of leverage.3 Nonetheless, leverage consistently ranks first or second among predictors (except
for industrial production) in terms of PIP. Its coefficients are positive and display considerably
higher magnitudes than most of the controls. BMA results thus corroborate our conclusion from
the OLS forecast exercise that there is a significantly positive relationship between leverage growth
and conditional output variability.

3.6 Conclusion

This paper documents a statistically significant negative link between leverage and future real
activity, and a significant positive link between leverage and the conditional volatility of future
real activity. These links appear particularly clearly when information from sectoral leverage series
is combined using cross-sectional medians or principal components. The results here show that
the predictive power of leverage is roughly comparable to that of macro and financial predictors
commonly used by forecasters. However, leverage information would not have allowed to predict
the ’Great Recession’ of 2008-2009 any better than conventional macro/financial predictors.

1There is only one notable exception: in about half of the regressions, securities brokers-dealers (SBD) leverage
is negatively linked to the volatility/dispersion measures.

2As pointed out by a referee, a GARCH-type model could also be used to assess the effect of leverage on volatility.
A one-period-ahead GARCH variance equation that includes leverage as a regressor supports the notion that leverage
is significantly positively related to future output volatility. (Implementing a GARCH set-up for a horizon of four
(or more) quarters raises major challenges beyond the scope of this paper.)

3These stem from five covariate groups: interest rates, price indexes, employment, investment, and capacity
utilization.
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3.A Data sources and definitions of variables

3.A.1 Predicted variables

Series label Variable Source

GDP Real gross domestic product Bureau of Economic Analysis

IP Industrial production index St. Louis Fed

UE Civilian unemployment rate, percent Bureau of Labor Statistics

I Real gross private domestic investment Bureau of Economic Analysis

Rx Excess stock return (French-Fama ’MKT’ return – T-bill return) K. French website

3.A.2 Leverage variables

Series label Variable Source

SBD Securities Brokers and Dealers leverage ratio Flow of Funds

CB Commercial Banks leverage ratio Flow of Funds

INS Life and casualty insurance leverage ratio Flow of Funds

SBD Securities Brokers and Dealers leverage ratio Flow of Funds

HH Households and nonprofit organizations leverage ratio Flow of Funds

BUS Non-farm non-financial corporate business leverage ratio Flow of Funds

BNK-MV US-Banks index : total assets / equity at market value Datastream

INS-MV US-Insurance index : total assets / equity at market value Datastream

FIN-MV US-Fin. Services index : total assets / equity at market value Datastream

3.A.3 Variables used to construct macro-financial factors

Variable Source Transformation

1) Real gross domestic product Bureau of Econ. Analysis Quarterly growth rate

2) Real government consumption and investment Bureau of Econ. Analysis Quarterly growth rate

3) GDP implicit price deflator Bureau of Econ. Analysis Quarterly growth rate

4) Real gross private domestic investment Bureau of Econ. Analysis Quarterly growth rate

5) Gross government saving, as share of GDP Bureau of Econ. Analysis Quarterly difference

6) Private housing starts of 1-family structures Bureau of Econ. Analysis Quarterly growth rate

7) Real personal consumption expenditures Bureau of Econ. Analysis Quarterly growth rate

8) Real personal consumption expenditures, durable goods Bureau of Econ. Analysis Quarterly growth rate

9) Real private non-residential fixed investment Bureau of Econ. Analysis Quarterly growth rate

10) Real private residential fixed investment Bureau of Econ. Analysis Quarterly growth rate

11) Real net exports of goods & services, as share of GDP Bureau of Econ. Analysis Quarterly difference

12) Total number of employees (non-farm) Bureau of Labor Statistics Quarterly growth rate

13) Commodities producer price index Bureau of Labor Statistics Quarterly growth rate

14) Civilian unemployment rate, percent Bureau of Labor Statistics Quarterly difference

15) Consumer price index, all urban consumers Bureau of Labor Statistics Quarterly growth rate

16) Oil price (spot WTI) USD/barrel Dow Jones & Company Quarterly growth rate

17) 3-month U.S. T-bill Federal Reserve Board Quarterly return

18) 2-year U.S. Treasury bond Federal Reserve Board Quarterly return

19) 5-year U.S. Treasury bond Federal Reserve Board Quarterly return

20) U.S. Treasury term spread: 10yr – 3month par yield Federal Reserve Board Quarterly difference

21) ISM manufacturing inventories index St. Louis Fed Quarterly difference

22) ISM manufacturing new orders index St. Louis Fed Quarterly difference

23) Industrial production index St. Louis Fed Quarterly difference

24) Nominal M2 money stock St. Louis Fed Quarterly growth rate

25) Total industry capacity utilization St. Louis Fed Quarterly growth rate

26) French-Fama HML factor K. French website —

27) French-Fama Momentum factor K. French website —

28) French-Fama SMB factor K. French website —

29) French-Fama Short-term reversal factor K. French website —

30) French-Fama Long-term reversal factor K. French website —
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3.A.4 Other variables

Variable Description Source

VIX Equity Volatility Index Chicago Board Options Exchange

SPF median forecasts Median forecasts for GDP, industrial Survey of Professional Forecasters,
production, unemployment rate and Philadelphia Fed

investment

SPF cross-sectional dispersion % difference between the 75th Survey of Professional Forecasters,
of forecasts and 25th percentiles of forecasts Philadelphia Fed

Note: The Flow of Funds leverage ratio for commercial banks (CB) displays a break in 1999. We corrected for this
break by projecting the CB leverage ratio on a time dummy and a linear and quadratic trend, and then adjusting
the raw series for the dummy coefficient.

Section 3.A.3 lists the 30 variables from which the four macro-financial factors (used as predictors) are extracted

(principal components). The right-most column lists the data transformations used in constructing the factors. Where

applicable, variables were used in seasonally-adjusted form as provided by the data source. Returns on Treasury bonds

are derived from constant maturity yield curves (estimated using the methodology of Gürkaynak et al. (2007)), as

published on the web page of the Federal Reserve Board.

67



3. CHAPTER 3

3.B Implementation of BMA

Bayesian Model Averaging (BMA) addresses uncertainty about which among K regressors to include
in a linear model such as equation (1). Each of the 2K potential variable combinations is considered
as a model Mγ to which a prior model probability p(Mγ) is assigned. After observing the data y,
this prior belief is updated to a posterior model probability via Bayes’ theorem:1

p(Mγ |y) =
p(y|Mγ)p(Mγ)∑2K

i=1 p(y|Mi)p(Mi)

The resulting posterior model probabilities then apply to constructing (the posterior distribution
for) any statistic of interest θ by weighting the individual model statistics with p(Mγ |y), thus
integrating over the posterior model distribution. In particular, this approach is useful for model-
weighted posterior regression coefficients p(β|y).2

p(θ|y) =

2K∑
γ=1

p(θ|Mγ , y)p(Mγ |y)

The individual forecast models Mγ are estimated via the popular natural-conjugate ’Bayesian re-
gression’ (Zellner 1971) with a ’g-prior’, as its closed-form posteriors ease the computational burden.
We specify prior beliefs on the individual model coefficients as in Fernández et al. (2001a), repre-
senting ignorance by centering the prior coefficient distribution at zero. The coefficient variance-
covariance prior is set proportional to the one arising from OLS, which simplifies posterior ex-
pressions: Model-specific posterior coefficients equal their OLS estimator times a shrinkage factor.
The marginal likelihood p(y|Mγ) resembles information criteria such as BIC in connecting the
OLS R-squared with a size penalty.3 In this framework, the crucial component is a ’shrinkage’
hyperparameter that indicates how tightly the researcher’s prior is centered at zero. In order to
minimize prior sensitivity, we follow the recommendation by Ley and Steel (2011a) and opt for
endogenous updating of this hyperparameter under the ’unit information hyper-prior’ formulation
by Feldkircher and Zeugner (2009).

We apply BMA to assess one-year-ahead forecast equations as in (1), jointly considering the leverage
variables together with the 30 macro-financial controls as described in Section 3.3.1. As it is
numerically infeasible to assess the billions of potential models under these settings, we approximate
the likelihood surface with a Metropolis-Hastings model sampler as in Fernández et al. (2001a).4

The BMA set-up discussed so far still requires the crucial choice of the model priors p(Mγ). In

1Here, p(y|Mγ) denotes the posterior marginal likelihood of the individual model Mγ that obtains from integrating
the likelihood p(y|β, σ,Mγ) over the posterior distributions of its parameters (β, σ).

2Tables 3.11–3.15 in the Appendix report conditional coefficients (i.e. posterior expected coefficients averaged
over the models where they are not restricted to zero) for comparison with the OLS forecast models. Many BMA
applications present unconditional coefficients instead (i.e. posterior expected coefficients averaged over all models).
The unconditional coefficient is defined as the expected coefficient over all models (i.e. including the ones restricting
the coefficient to zero) and are equal to the conditional coefficient times PIP.

3Note that integration over a model’s parameters yields posterior densities of any kind for each model (in par-
ticular coefficient densities). This framework naturally extends to formulating a posterior predictive distribution
p(yT+h|{yt}Tt=1,Mγ), applied in Figure 3.6–3.7.

4For each of the rolling samples and each dependent variable, we use 2 000 000 iterations of this sampler, after
discarding 400 000 ’burn-in’ draws. Diagnostic statistics indicate that this approximates the likelihood surface very
well for each sampling chain: For the highest-ranking 2 000 models encountered by the sampler, the correlation
between MCMC frequencies and analytical PMP is above 0.99 in each case.
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most applications, model priors are chosen to not discriminate between potential regressors, but to
impose a parameter size penalty in order to reflect a preference for parsimonious models.1 In our
set-up, we follow the popular binomial model prior of Sala-i-Martin et al. (2004), which specifies
equal prior inclusion probabilities for each covariate. For ’BMA NO-LEV’ and ’BMA MED-LEV’,
we tune these prior inclusion probabilities such that the prior expected model size is equal to five
– which is equal to the number of predictors in the OLS factor model ’F’.2

However, applying the same model prior to ’BMA 8-LEV’ would imply a relatively high prior joint
inclusion probability for leverage (eight times more than that for an individual control). Under such
a prior, it would thus be eight times more likely to find at least one leverage variable as important
as a single macro-financial control (or as median leverage growth under ’BMA MED-LEV’). We
consequently specify a more conservative prior for leverage variables that constrains p(Mγ) to zero
for any model that includes more than one leverage regressor.3 At the same time, we keep the prior
inclusion probabilities for the controls similar to ’BMA MED-LEV’, such that the prior expected
parameter is again equal to five. This translates into a prior inclusion probability of just 2.7% for
individual leverage variables, compared to 10% for the macro-financial controls.4

1Note that adjusting priors for parameter size is particularly important when comparing BMA settings with
differing numbers of regressors K. If one did not adjust for parameter size, a setting with larger K would expect more
predictive power a priori.

2We did experiment with other prior expected parameter sizes (as well as with uniform model priors as in Faust
et al. (2011)): The conclusions on the relative importance of leverage remain similar, but the absolute levels of
posterior inclusion probabilities vary such that results are less comparable to the OLS results (the relative ranking
of PIP remains similar to the presented output).

3At its extreme, such a prior can be seen as a variant of a ’dilution prior’ as in George (2010, chapter 4), that
defines models priors according to a collinearity indicator for each model (with the prior used here being a Dirac
collinearity prior based on group adherence). Note, however, that in our case ’dilution’ only applies to models
including leverage variables, and that this prior is combined with a model size-based prior.

4A similar model prior is employed for the BMA estimation on conditional forecast variability (Table 3.15).
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(a) Commercial banks, Insurance (FoF) (b) Securities brokers-dealers (FoF)

(c) Households, non-financial businesses (FoF) (d) Banks, insurance, fin. services (equity mkt. val.)

Figure 3.1: Leverage ratios

The Figure plots the time series of leverage ratios for the following sectors – CB: commercial banks (from Flow

of Funds, FoF); INS: insurance (FoF); SBD: securities brokers and dealers (FoF); HH: households (FoF); BUS:

non-financial corporate businesses (FoF); BNK-MV, INS-MV, FIN-MV: Banks, insurance and financial services,

respectively, based on equity market values. Sample period: 1993q3-2010q3. Shaded areas indicate NBER recessions.

71



3. CHAPTER 3

Figure 3.2: Year-on-year GDP growth rate (in %) actual and predicted

The Figure shows actual and predicted year-on-year GDP rates growth (in %), 1993q3-2010q3. The
line labeled ’F’ shows the prediction (based on 40-quarter rolling estimation windows) generated by
a forecast model that includes (as predictors) four factors extracted from a set of 30 macro-financial
variables. The line labeled ’F, MED-LEV’ shows the prediction obtained by adding the median
of the annual growth rates of the 8 sectoral leverage series, as a predictor. Shaded areas indicate
NBER recessions.
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(a) Standardized coefficients: FoF leverage measures (b) P-values: FoF leverage measures

(c) Standardized coefficients: other leverage measures (d) P-values: other leverage measures

Figure 3.3: Slope coefficients of leverage and p-values, from rolling forecast regressions for GDP

Panels (a) & (c): Standardized regression coefficients of leverage variables in forecast regression for
GDP (based on 40-quarter rolling windows). Panels (b) & (d): probability-values from Newey-West
HAC t-statistics for slope coefficients of leverage (from GDP forecast regressions). Each forecast
regression includes the following predictors: a constant, the quarterly first difference of GDP,
and one leverage variable. Date (abscissa) indicates final observation of the 40-quarter estimation
window for the explanatory variables. Shaded areas indicate NBER recessions.
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Figure 3.4: Scatter plots of future absolute forecast errors, VIX and forecast dispersion vs. leverage

The Figure shows scatter plots of absolute forecast errors for GDP (in %) between t and t+ 4, of
Equity Volatility Index (VIX) at t, and of date t cross-sectional dispersion of SPF forecasts of GDP
growth between t and t + 4 vs. the first principal component (of the YoY change) of sectoral log
leverages between t−4 and t. The forecast errors pertain to forecast model ’F’ (four macro-financial
factors used as predictors), based on rolling 40-quarter estimation windows. The sample period (t)
is 1992q3-2009q3.
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Figure 3.5: Time series plots of absolute future forecast errors, VIX, forecast dispersion and leverage

Each panel shows time series plots the first principal component of the YoY change in sectoral log
leverages between t − 4 and t, and another variable. Panel (a): absolute forecast error for GDP
(in %) between t and t + 4. Panel (b): Equity Volatility Index (VIX) at t. Panel (c): SPF date
t cross-sectional dispersion of forecasts of GDP growth between t and t + 4. (Thus: same timing
conventions as in Figure 4.) The forecast errors pertain to forecast model ’F’ (four macro-financial
factors used as predictors), based on rolling 40-quarter estimation windows. The sample period (t)
is 1992q3-2009q3. Shaded areas indicate NBER recessions.
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Figure 3.6: Year-on-year GDP growth forecasts from BMA without leverage

The Figure shows actual and predicted year-on-year GDP rates growth (in %), 1993q3-2010q3,
based on setting ’BMA no LEV’. The black line shows the expected forecast (based on 40-quarter
rolling estimation window) generated by a rolling BMA estimations based over 30 macro-financial
variables. The lightly shaded areas indicate intervals of the BMA prediction density (corresponding
to standard errors). The vertically oriented shaded areas indicate NBER recessions.

Figure 3.7: Year-on-year GDP growth forecasts from BMA including leverage

The Figure shows actual and predicted year-on-year GDP rates growth (in %), 1993q3-2010q3,
based on setting ’BMA MED-LEV’. The black line shows the expected forecast (based on 40-quarter
rolling estimation window) generated by a BMA estimations over 30 macro-financial variables as
well as MED-LEV (median of the standardized YoY change of the 8 sectoral log leverage series). The
lightly shaded areas indicate intervals of the BMA prediction density (corresponding to standard
errors). The vertically oriented shaded areas indicate NBER recessions.
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Table 3.1: RMSEs of ’Just ∆Y ’ forecast model & relative RMSEs of other models and SPF

In-sample RMSEs Out-of-sample RMSEs

Forecast model: GDP IP UE I Rx GDP IP UE I Rx

Just ∆Y 1.77 3.9 0.87 10.16 19.63 1.91 4.27 0.95 10.93 20.96

Random Walk 1.09 1.11 1.22 1.04 1.00 1.05 1.04 1.10 1.00 0.98
F 0.74 0.78 0.67 0.69 0.92 0.97 0.87 0.76 0.85 1.10
F, PC-LEV 0.68 0.71 0.62 0.64 0.91 0.93 0.87 0.74 0.83 1.17
F, MED-LEV 0.66 0.69 0.60 0.62 0.89 0.90 0.85 0.72 0.80 1.19
F, MED-FoF 0.62 0.70 0.61 0.63 0.80 0.84 0.90 0.83 0.87 1.00
F, MED-MV 0.68 0.71 0.63 0.63 0.90 0.96 0.87 0.76 0.85 1.17
PC-LEV 0.89 0.93 0.88 0.93 0.99 0.96 1.03 0.91 1.00 1.12
MED-LEV 0.85 0.89 0.83 0.88 0.98 0.90 0.94 0.82 0.93 1.14
CB 0.99 0.94 0.96 0.98 0.97 1.04 0.98 1.00 1.03 1.07
INS 0.94 0.95 0.95 0.93 0.90 0.95 0.97 0.97 0.95 0.94
SBD 0.96 0.96 0.94 0.91 0.90 0.99 0.94 0.95 0.89 0.93
HH 0.95 0.98 0.89 0.97 1.00 1.00 1.00 0.92 1.00 1.18
BUS 0.99 1.00 0.99 1.00 1.00 1.19 1.22 1.17 1.30 1.28
BNK-MV 0.88 0.95 0.95 0.93 0.99 0.95 1.08 1.02 1.04 1.10
INS-MV 0.96 0.99 0.99 0.98 1.00 0.97 1.03 1.01 1.00 1.04
FIN-MV 0.86 0.79 0.77 0.81 0.97 1.02 0.93 0.93 0.98 1.06
SPF NA NA NA NA NA 1.04 1.03 0.96 0.93 NA
BMA no LEV 0.62 0.63 0.24 0.59 0.84 1.08 1.10 0.98 1.01 1.20
BMA MED-LEV 0.57 0.53 0.24 0.49 0.84 1.03 0.98 0.92 1.02 1.21
BMA 8-LEV 0.60 0.61 0.24 0.55 0.75 1.09 1.20 1.11 1.10 1.26

Note: The first row shows absolute root mean squared forecast errors (RMSEs) of the ’Just ∆Y ’
forecast model. Rows 2-21 show relative RMSEs, with respect to the ’Just ∆Y ’ model. The model
variants are listed in the first column (see main text for model descriptions). The row (’SPF’)
pertains to median SPF forecasts (not available for equity returns). The last three rows (’BMA. . . ’)
represent RMSE with respect to forecasts (expected values of the predictive densities) from Bayesian
Model Averaging. ’In-sample RMSEs’ are based on regression (1) estimated for the sample 1993q3-
2010q3 (for each dependent variable). ’Out-of-sample RMSEs’ are based on (pseudo) out-of-sample
forecasts one year ahead, from 40-quarter rolling estimation windows (forecast evaluation period:
1993q3-2010q3). Columns labeled ’GDP’,...,’Rx’ show RMSE’s for the different forecasted variables
(IP: industrial production; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.2: Regression coefficients of leverage: whole sample and rolling windows

Whole sample % Rolling windows with
significant negative coefficients

Forecast
model GDP IP UE I Rx GDP IP UE I Rx
F, PC-LEV -0.42 *** -0.49 *** 0.37 ** -0.38 ** -0.24 0.46 0.68 0.14 0.52 0.19

{0.62} {0.60} {0.74} {0.61} {0.18} {0.46} {0.71} {0.54} {0.52} {0.30}
F, MED-LEV -0.45 -0.51 0.40 -0.45 -0.39 0.74 0.70 0.07 0.77 0.45

{0.63} {0.62} {0.76} {0.65} {0.21} {0.74} {0.70} {0.52} {0.77} {0.58}
F, MED-FoF -0.45 -0.39 0.31 -0.33 -0.65 0.86 0.72 0.00 0.78 0.71

{0.67} {0.60} {0.75} {0.63} {0.36} {0.86} {0.72} {0.49} {0.78} {0.81}
F, MED-MV -0.36 -0.42 0.29 -0.39 -0.24 0.36 0.29 0.33 0.29 0.09

{0.61} {0.60} {0.74} {0.63} {0.19} {0.38} {0.39} {0.46} {0.29} {0.12}
PC-LEV -0.53 -0.47 0.60 -0.44 -0.15 0.75 1.00 0.00 0.81 0.30

{0.34} {0.31} {0.48} {0.19} {0.02} {0.75} {1.00} {0.52} {0.81} {0.42}
MED-LEV -0.61 -0.56 0.63 -0.57 -0.25 0.87 0.97 0.00 1.00 0.43

{0.40} {0.37} {0.54} {0.28} {0.05} {0.87} {0.97} {0.61} {1.00} {0.54}
CB -0.13 -0.30 0.22 -0.20 -0.25 0.32 0.61 0.04 0.59 0.46

{0.18} {0.29} {0.38} {0.11} {0.06} {0.32} {0.71} {0.88} {0.68} {0.59}
INS -0.32 -0.30 0.26 -0.38 -0.46 0.78 0.83 0.00 0.62 0.46

{0.26} {0.27} {0.39} {0.20} {0.19} {0.78} {0.83} {0.45} {0.62} {0.57}
SBD -0.25 -0.26 0.30 -0.40 -0.44 0.29 0.07 0.00 0.25 0.65

{0.23} {0.26} {0.40} {0.22} {0.19} {0.29} {0.09} {0.26} {0.26} {0.65}
HH -0.43 -0.29 0.62 -0.35 0.05 0.81 0.48 0.00 0.70 0.00

{0.25} {0.23} {0.47} {0.13} {0.01} {0.81} {0.48} {0.80} {0.70} {0.36}
BUS -0.15 -0.02 0.12 0.04 -0.10 0.46 0.29 0.03 0.17 0.55

{0.18} {0.20} {0.33} {0.07} {0.01} {0.46} {0.29} {0.35} {0.17} {0.59}
BNK-MV -0.48 -0.33 0.31 -0.41 -0.14 0.72 0.41 0.00 0.75 0.03

{0.35} {0.27} {0.40} {0.20} {0.02} {0.72} {0.41} {0.13} {0.75} {0.03}
INS-MV -0.28 -0.16 0.14 -0.18 -0.04 0.54 0.26 0.00 0.54 0.00

{0.23} {0.22} {0.34} {0.10} {0.01} {0.54} {0.26} {0.00} {0.54} {0.13}
FIN-MV -0.57 -0.69 0.62 -0.67 -0.30 0.01 0.86 0.00 0.48 0.01

{0.39} {0.50} {0.60} {0.39} {0.07} {0.01} {0.86} {0.25} {0.48} {0.16}

Note: The Left panel (labeled ’Whole sample’) shows standardized slope coefficients of leverage,
from regressions of each dependent variable on lagged leverage and other predictors for the pe-
riod 1993q3-2010q3 (for each dependent variable). Asterisks indicate significance levels (based on
Newey-West HAC t-statistic): * 10%, ** 5%, *** 1%. Numbers in brackets are R2 coefficients of
corresponding regression equations.
The Right panel (labeled ’% Rolling windows with significant negative coefficients’) shows shares of
leverage coefficients that are significantly smaller than zero at a 10% level (two-sided Newey-West
HAC t-test), among the rolling 40-quarter estimation windows; numbers in brackets pertain to the
share of estimation windows with significant leverage coefficients at 10% level (i.e. sum of shares
for significant negative and positive coefficients).
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.3: P-values of Clark-West (2007) test of equal predictive accuracy, relative to benchmark ’Just
∆Y ’ model

Forecast model GDP IP UE I Rx

Random Walk 0.61 0.35 0.35 0.33 0.03
F 0.06 0.04 0.02 0.02 0.59
F, PC-LEV 0.05 0.04 0.02 0.02 0.52
F, MED-LEV 0.04 0.03 0.02 0.01 0.59
F, MED-FoF 0.03 0.03 0.02 0.01 0.06
F, MED-MV 0.06 0.06 0.02 0.02 0.67
PC-LEV 0.04 0.31 0.04 0.21 0.62
MED-LEV 0.01 0.04 0.04 0.02 0.61
CB 0.76 0.05 0.18 0.36 0.82
INS 0.00 0.00 0.11 0.01 0.01
SBD 0.07 0.15 0.13 0.12 0.05
HH 0.01 0.03 0.01 0.02 0.97
BUS 0.45 0.69 0.64 0.89 0.64
BNK-MV 0.08 0.51 0.55 0.42 0.79
INS-MV 0.05 0.63 0.65 0.13 0.88
FIN-MV 0.61 0.00 0.11 0.08 0.94

Note: For each model listed in the first column (see main text), and for each of the forecasted
variables, the Table reports the p-value of a test of the null hypothesis that that model has the
same predictive accuracy (RMSE) as the benchmark ’Just ∆Y ’ model. (The benchmark model nests
random walk and is nested in each of the remaining models.) The MSPE-adjusted test statistic of
Clark and West (2007) is used. Columns labeled ’GDP’, . . . ,’Rx’ show p-values for the different
forecasted variables (IP: industrial production; UE: unemployment rate; I: investment; Rx: excess
equity return). Out-of-sample forecasts (based on 40-quarter rolling estimation window) are used;
the forecast evaluation period is 1993q3-2010q3.
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Table 3.4: RMSEs of models that include 8-quarter differences of leverage as predictors

In-sample RMSEs Out-of-sample RMSEs

Forecast model: GDP IP UE I Rx GDP IP UE I Rx

Just ∆Y 1.8 3.99 0.88 10.32 20.17 1.95 4.39 0.97 11.16 21.53
F 0.74 0.78 0.65 0.66 0.92 0.97 0.87 0.74 0.84 1.10
F, PC-LEV 0.69 0.71 0.61 0.65 0.90 0.94 0.89 0.76 0.86 1.16
F, MED-LEV 0.67 0.71 0.60 0.63 0.89 0.89 0.86 0.73 0.82 1.13
PC-LEV 0.96 0.98 0.96 0.99 1.00 1.01 1.06 1.02 1.07 1.16
MED-LEV 0.93 0.98 0.94 0.98 0.99 0.95 1.01 0.97 1.02 1.20

Note: The RMSEs reported in this Table pertain to forecast models similar to (1), but with leverage
indicators (Λt) based on 8-quarter differences of sectoral leverage series. The first row shows abso-
lute RMSEs of the ’Just ∆Y ’ forecast model (RMSEs are different from those shown Table 3.1, as
the forecast evaluation period here was shortened to 1994q3-2010q3 for data availability reasons).
The remaining rows show relative RMSEs, with respect to the ’Just ∆Y ’ model. The model vari-
ants are listed in the first column (see main text for model descriptions).
’In-sample RMSEs’ are based on regressions estimated for the sample 1994q3-2010q3 (for each de-
pendent variable). ’Out-of-sample RMSEs’ are based on (pseudo) out-of-sample forecasts one year
ahead, from 40-quarter rolling estimation windows.
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).

Table 3.5: Regression coefficients of leverage indicators (based on 8-quarter differences)

Whole sample % Rolling windows with
significant negative coefficients

Forecast
model GDP IP UE I Rx GDP IP UE I Rx
F, PC-LEV -0.43 ** -0.52 *** 0.35 ** -0.24 -0.29 0.49 0.71 0.00 0.40 0.37

{0.61} {0.60} {0.75} {0.60} {0.19} {0.71} {0.71} {0.46} {0.40} {0.40}
F, MED-LEV -0.52 -0.53 0.38 -0.37 -0.40 0.66 0.85 0.00 0.60 0.58

{0.64} {0.60} {0.75} {0.63} {0.21} {0.66} {0.85} {0.65} {0.60} {0.71}
PC-LEV -0.34 -0.23 0.36 -0.14 -0.10 0.62 1.00 0.00 0.68 0.18

{0.24} {0.22} {0.37} {0.08} {0.01} {0.62} {1.00} {0.88} {0.68} {0.18}
MED-LEV -0.44 -0.28 0.45 -0.24 -0.13 0.83 1.00 0.00 0.89 0.42

{0.29} {0.23} {0.40} {0.10} {0.02} {0.83} {1.00} {1.00} {0.89} {0.60}

Note: The Left panel (labeled ’Whole sample’) shows standardized slope coefficients of leverage
indicators, based on 8-quarter differences of sectoral leverage series, for the models considered in
Table 4. The coefficients are from regressions of each dependent variable on these leverage indica-
tors and other predictors for the period 1994q3-2010q3. Asterisks indicate significance levels (based
on Newey-West HAC t-statistics): * 10%, ** 5%, *** 1%. Numbers in brackets are R2 coefficients
of corresponding regression equations.
The Right panel (labeled ’% Rolling windows with significant negative coefficients’) shows shares of
leverage coefficients that are significantly smaller than zero at a 10% level (two-sided Newey-West
HAC t-test), among the rolling 40-quarter estimation windows; numbers in brackets pertain to the
share of estimation windows with significant leverage coefficients at 10% level (i.e. sum of shares
for significant negative and positive coefficients). The left column lists model variants, as described
in the main text.
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.6: RMSEs of models that include non-linear transformations of leverage as predictors

In-sample RMSEs Out-of-sample RMSEs

Forecast model: GDP IP UE I Rx GDP IP UE I Rx

Just ∆Y 1.77 3.90 0.87 10.16 19.63 1.91 4.27 0.95 10.93 20.96
F 0.74 0.78 0.67 0.69 0.92 0.97 0.87 0.76 0.85 1.10

F, PC-LEV asym 0.68 0.71 0.59 0.64 0.90 1.02 0.93 0.78 0.93 1.25
F, MED-LEV asym 0.66 0.68 0.57 0.62 0.88 0.95 0.88 0.75 0.86 1.26
PC-LEV asym 0.89 0.93 0.83 0.93 0.98 1.13 1.18 1.08 1.21 1.19
MED-LEV asym 0.85 0.89 0.77 0.88 0.96 0.98 1.02 0.86 1.02 1.20

F, PC-LEV sq 0.68 0.71 0.60 0.64 0.88 1.16 1.04 0.79 1.03 1.40
F, MED-LEV sq 0.66 0.68 0.57 0.62 0.87 1.01 0.98 0.74 0.89 1.49
PC-LEV sq 0.89 0.92 0.85 0.93 0.95 1.35 1.33 1.20 1.35 1.31
MED-LEV sq 0.85 0.89 0.79 0.88 0.93 1.08 1.14 0.91 1.08 1.40

Note: This Table shows RMSEs for forecast models that include non-linear transformations of
leverage indicators as predictors; see equation (2). The suffix ’asym’ denotes inclusion of the asym-
metric term max(0,Λt). The suffix ’sq’ denotes inclusion of the squared term Λ2

t . The following
predictors are also included: the past change in real activity (Yt−Yt−1), the macro-financial factors
(Φt) and Λt.
The first row shows absolute RMSEs of the ’Just ∆Y ’ forecast model. The remaining rows show
relative RMSEs, with respect to the ’∆Y ’ model. The model variants are listed in the first column
(see main text for descriptions).
’In-sample RMSEs’ are based on regressions estimated for the sample 1993q3-2010q3 (for each de-
pendent variable). ’Out-of-sample RMSEs’ are based on (pseudo) out-of-sample forecasts one year
ahead, from 40-quarter rolling estimation windows (forecast evaluation period: 1993q3-2010q3).
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.7: Regression coefficients of leverage in forecast models that also include non-linear transfor-
mations of leverage as predictors

Whole sample % Rolling windows with
significant negative coefficients

Forecast model GDP IP UE I Rx GDP IP UE I Rx

F, PC-LEV asym -0.38 ** -0.39 * 0.11 -0.40 ** -0.48 0.28 0.10 0.03 0.23 0.00
{0.62} {0.60} {0.76} {0.61} {0.20} {0.28} {0.12} {0.04} {0.23} {0.07}

F, MED-LEV asym -0.36 ** -0.29 0.10 -0.42 ** -0.60 * 0.23 0.10 0.12 0.33 0.09
{0.63} {0.63} {0.78} {0.65} {0.22} {0.23} {0.13} {0.13} {0.33} {0.12}

PC-LEV asym -0.58 *** -0.53 ** 0.16 -0.48 ** -0.54 * 0.58 0.13 0.00 0.46 0.03
{0.34} {0.31} {0.53} {0.19} {0.05} {0.58} {0.13} {0.09} {0.46} {0.04}

MED-LEV asym -0.59 *** -0.44 ** 0.15 -0.50 *** -0.61 ** 0.65 0.14 0.01 0.42 0.16
{0.40} {0.37} {0.60} {0.28} {0.08} {0.65} {0.14} {0.09} {0.42} {0.17}

F, PC-LEV sq -0.43 *** -0.49 *** 0.35 *** -0.38 *** -0.27 0.54 0.71 0.14 0.62 0.22
{0.62} {0.60} {0.76} {0.61} {0.22} {0.54} {0.77} {0.57} {0.62} {0.33}

F, MED-LEV sq -0.44 *** -0.50 *** 0.38 *** -0.45 *** -0.39 0.77 0.74 0.12 0.88 0.48
{0.63} {0.63} {0.78} {0.65} {0.25} {0.77} {0.74} {0.61} {0.88} {0.57}

PC-LEV sq -0.57 *** -0.50 ** 0.55 ** -0.46 * -0.35 0.80 0.93 0.00 0.91 0.33
{0.35} {0.32} {0.52} {0.19} {0.10} {0.80} {0.93} {0.55} {0.91} {0.43}

MED-LEV sq -0.63 *** -0.56 *** 0.59 *** -0.57 *** -0.39 * 0.86 0.96 0.00 1.00 0.46
{0.40} {0.37} {0.57} {0.28} {0.13} {0.86} {0.96} {0.64} {1.00} {0.58}

Note: The Left panel (labeled ’Whole sample’) shows coefficients (β3) of leverage in forecasting
equation (2) (note: the equation also includes a non-linear function of leverage, as a regressor);
estimation period: 1993q3-2010q3.
Asterisks indicate significance levels (based on Newey-West HAC t-statistics): * 10%, ** 5%, ***
1%. Numbers in brackets are R2 coefficients of corresponding regression equations.
The Right panel (labeled ’% Rolling windows with significant negative coefficients’) shows shares of
leverage coefficients that are significantly smaller than zero at a 10% level (two-sided Newey-West
HAC t-test), among the rolling 40-quarter estimation windows; numbers in brackets pertain to the
share of estimation windows with significant leverage coefficients at 10% level (i.e. sum of shares
for significant negative and positive coefficients). The left column lists model variants, as described
in the main text.
The left column lists model variants (see main text for descriptions). The suffix ’asym’ denotes
inclusion of the term max(Λt, 0); the suffix ’sq’ denotes inclusion of the leverage growth indicator
squared, (Λt)

2.
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.8: Regression coefficients of non-linear transformations of leverage

Whole sample % Rolling windows with
significant negative coefficients

Forecast model GDP IP UE I Rx GDP IP UE I Rx

F, PC-LEV asym -0.06 -0.15 0.39 0.03 0.36 0.07 0.20 0.01 0.09 0.09
{0.62} {0.60} {0.76} {0.61} {0.20} {0.32} {0.22} {0.17} {0.33} {0.13}

F, MED-LEV asym -0.13 -0.33 0.44 * -0.05 0.33 0.06 0.36 0.00 0.07 0.33
{0.63} {0.63} {0.78} {0.65} {0.22} {0.23} {0.39} {0.22} {0.30} {0.54}

PC-LEV asym 0.06 0.08 0.62 * 0.04 0.42 0.09 0.19 0.04 0.13 0.14
{0.34} {0.31} {0.53} {0.19} {0.05} {0.33} {0.19} {0.19} {0.33} {0.14}

MED-LEV asym -0.02 -0.15 0.65 *** -0.09 0.42 0.09 0.28 0.00 0.14 0.36
{0.40} {0.37} {0.60} {0.28} {0.08} {0.17} {0.28} {0.39} {0.26} {0.48}

F, PC-LEV sq 0.02 -0.04 0.19 0.01 0.35 0.10 0.23 0.06 0.09 0.10
{0.62} {0.60} {0.76} {0.61} {0.22} {0.35} {0.28} {0.26} {0.35} {0.22}

F, MED-LEV sq -0.02 -0.13 0.22 * -0.04 0.30 0.07 0.41 0.06 0.07 0.43
{0.63} {0.63} {0.78} {0.65} {0.25} {0.25} {0.48} {0.33} {0.30} {0.64}

PC-LEV sq 0.11 0.14 0.26 ** 0.06 0.35 * 0.14 0.19 0.09 0.13 0.17
{0.35} {0.32} {0.52} {0.19} {0.10} {0.26} {0.19} {0.29} {0.23} {0.19}

MED-LEV sq 0.09 0.04 0.25 ** 0.02 0.34 * 0.14 0.29 0.04 0.16 0.41
{0.40} {0.37} {0.57} {0.28} {0.13} {0.25} {0.29} {0.28} {0.26} {0.54}

Note: The Left panel (labeled ’Whole sample’) shows standardized slope coefficients (β4) for the
non-linear function of leverage, in forecasting equation (2); estimation period: 1993q3-2010q3.
Asterisks indicate significance levels (based on Newey-West HAC t-statistics): * 10%, ** 5%, ***
1%. Numbers in brackets are R2 coefficients of corresponding regression equations.
The Right panel (labeled ’% Rolling windows with significant negative coefficients’) shows the share
of coefficients for the non-linear functions of leverage that are significantly smaller than zero at a
10% level (two-sided Newey-West HAC t-test), among the rolling 40-quarter estimation windows.
Numbers in brackets pertain to the share of estimation windows with significant non-linear terms
at 10% level (i.e. sum of shares for significantly negative and positive coefficients).
The left column lists model variants (see main text for descriptions). The suffix ’asym’ denotes
inclusion of the term max(Λt, 0); the suffix ’sq’ denotes inclusion of the leverage growth indicator
squared, (Λt)

2.
Columns labeled ’GDP’, . . . ,’Rx’ pertain to the different forecasted variables (IP: industrial pro-
duction; UE: unemployment rate; I: investment; Rx: excess equity return).
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Table 3.9: Regressions of absolute out-of-sample forecast errors on leverage and macro-financial factors

Forecast model GDP IP UE I Rx

CB 0.22 {.01; .05} 0.38 {.04; .14} 0.24 {.01; .06} 0.25 {.05; .06} 0.42 {.00; .18}
INS 0.26 {.08; .07} 0.21 {.12; .05} 0.25 {.06; .06} 0.36 {.01; .13} 0.29 {.04; .08}
SBD -0.25 {.19; .06} 0.02 {.87; .00} 0.01 {.91; .00} -0.07 {.64; .01} -0.23 {.09; .05}
HH 0.52 {.00; .27} 0.34 {.01; .12} 0.46 {.01; .22} 0.35 {.01; .12} 0.53 {.00; .28}
BUS 0.45 {.00; .20} 0.34 {.02; .12} 0.48 {.00; .23} 0.42 {.00; .18} 0.36 {.00; .13}
BNK-MV 0.39 {.00; .15} 0.29 {.10; .08} 0.40 {.08; .16} 0.26 {.05; .07} 0.42 {.00; .18}
INS-MV 0.44 {.00; .20} 0.28 {.04; .08} 0.24 {.23; .06} 0.28 {.04; .08} 0.48 {.00; .23}
FIN-MV 0.34 {.00; .11} 0.39 {.00; .15} 0.57 {.00; .32} 0.38 {.00; .14} 0.38 {.00; .14}

8 Leverages jointly {.00; .37} {.00; .33} {.00; .55} {.00; .31} {.00; .50}

PC-LEV 0.57 {.00; .32} 0.42 {.00; .18} 0.52 {.01; .27} 0.45 {.00; .20} 0.61 {.00; .37}
MED-LEV 0.47 {.00; .22} 0.41 {.00; .17} 0.51 {.01; .26} 0.43 {.00; .18} 0.55 {.00; .31}

F, PC-LEV {.00; .44} {.01; .25} {.01; .33} {.00; .32} {.00; .49}
F, MED-LEV {.00; .37} {.01; .25} {.00; .32} {.00; .29} {.00; .49}

F {.00; .19} {.06; .13} {.00; .15} {.01; .15} {.00; .20}

Note: This Table reports standardized slope coefficients of leverage, p-values (1st figure in paren-
theses) and R2 coefficients (2nd figure in parentheses) of regressions of absolute forecast errors
for GDP, industrial production (IP), the unemployment rate (UE), gross investment (I) and the
equity excess return (Rx), on the variables shown in the first column (a constant is included in all
regressions). Columns labeled ’GDP’, . . . ,’Rx’ indicate the respective dependent variable. P-values
are based on Newey-West HAC t-statistics.
Absolute forecast errors pertains to differences between realizations at t + 4 and forecasts made
at t; forecasts are generated using the forecast regression referred to as ’F’ in the text (based on
rolling 40 quarter estimation window), i.e. the four macro-financial factors are used as predictors.
Absolute forecast errors are regressed on changes of log leverage between t− 4 and t (observed at
t). The sample period (t) is 1992q3-2009q3.
The first eight rows use each sectoral leverage variable (YoY changes) as an individual regressor.
The row labeled ’8 Leverages jointly’ uses all 8 leverage series jointly as regressors (in parenthe-
ses: p-values of a joint significance test of all 8 leverage variables, based on a Wald test, with
HAC covariance matrix). The row labeled ’PC-LEV’ pertains to a regression on the first principal
component of YoY changes of the 8 sectoral leverage series. The row labeled ’MED-LEV’ uses the
median of the standardized YoY change of the 8 sectoral log leverage series as a regressor. The next
two rows add the four principal macro-financial factors as regressors. The last row (labeled ’F’)
regresses absolute forecast errors on just the four macro-financial factors. All regressions include a
constant.
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Table 3.10: Regressions of cross-sectional dispersion of SPF forecasts for GDP, IP, UE and I (4 quarters
ahead), and of equity price volatility index (VIX), on leverage and macro-financial factors

Forecast Dispersion
Forecast model GDP IP UE I VIX

CB 0.01 {.92; .00} 0.05 {.70; .00} 0.01 {.92; .00} -0.02 {.87; .00} 0.38 {.01; .15}
INS 0.26 {.04; .06} -0.09 {.55; .01} 0.36 {.04; .13} 0.11 {.40; .01} 0.17 {.28; .03}
SBD -0.45 {.01; .21} -0.52 {.00; .27} 0.04 {.68; .00} -0.39 {.09; .15} -0.26 {.09; .07}
HH 0.54 {.00; .30} 0.48 {.00; .23} 0.16 {.30; .02} 0.51 {.00; .26} 0.59 {.00; .35}
BUS 0.62 {.00; .39} 0.42 {.09; .18} 0.11 {.48; .01} 0.67 {.00; .45} 0.42 {.02; .18}
BNK-MV 0.33 {.18; .11} 0.24 {.29; .06} -0.04 {.80; .00} 0.56 {.00; .32} 0.33 {.08; .11}
INS-MV 0.43 {.02; .19} 0.40 {.03; .16} 0.02 {.91; .00} 0.52 {.00; .27} 0.49 {.01; .24}
FIN-MV 0.49 {.00; .24} 0.35 {.00; .12} 0.30 {.00; .09} 0.34 {.03; .12} 0.55 {.00; .30}

8 Leverages jointly {.00; .55} {.00; .50} {.00; .22} {.00; .59} {.00; .57}

PC-LEV 0.54 {.00; .29} 0.36 {.05; .13} 0.20 {.19; .04} 0.54 {.00; .30} 0.59 {.00; .35}
MED-LEV 0.45 {.00; .20} 0.30 {.06; .10} 0.16 {.28; .02} 0.49 {.00; .24} 0.55 {.00; .30}

F, PC-LEV {.00; .34} {.01; .21} {.01; .10} {.00; .36} {.00; .36}
F, MED-LEV {.00; .28} {.01; .18} {.00; .08} {.00; .31} {.00; .32}

F {.00; .14} {.00; .13} {.11: .04} {.04; .15} {.08; .06}

Note: This Table reports standardized slope coefficients of leverage, p-values (1st figure in paren-
theses) and R2 coefficients (2nd figure in parentheses) of: (i) regressions of the cross-sectional
dispersion of 4-quarter-ahead SPF forecasts made at date t for GDP, industrial production (IP),
the unemployment rate (UE) and private investment (I), on the change of log leverage between t−4
and t; (ii) regressions of the logged CBOE equity price volatility index (VIX) at the end of period t
on leverage growth between t− 4 and t. P-values are based on Newey-West HAC t-statistics. The
sample period (t) is 1992q3-2009q3.
The first eight rows use each sectoral leverage variable (YoY changes) as an individual regressor.
The row labeled ’8 Leverages jointly’ pertains to regressions on all 8 individual leverage series
jointly (in parentheses: p-values of a joint significance test of all 8 leverage variables, and R2).
The row labeled ’PC-LEV’ pertains to a regression of forecast dispersion/VIX on the first principal
component of YoY changes of the 8 log leverage series. The row labeled ’MED-LEV’ uses the
median of the standardized YoY change of the log leverage series as a regressor. The next two rows
add the four principal macro-financial factors as regressors. The last row (labeled ’F’) regresses
forecast dispersion/VIX on just the four macro-financial factors. All regressions include a constant.
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Table 3.11: Coefficients and Posterior Inclusion Probabilities for in-sample BMA with individual
leverage growth rates

GDP IP UE I Rx

Gross domestic product -0.16 {0.09} -0.06 {0.05} -0.11 {0.05} -0.18 {0.07} -0.05 {0.06}
Government expenditure -0.14 {0.09} -0.04 {0.03} 0.05 {0.04} -0.13 {0.09} -0.04 {0.06}
GDP implicit price deflator -0.17 {0.09} -0.11 {0.06} -0.09 {0.06} -0.24 {0.31} 0.23 {0.18}
Gross private domestic investment -0.27 {0.10} -0.04 {0.04} -0.12 {0.05} -0.29 {0.15} 0.11 {0.08}
Gross gov’t saving (% of GDP) 0.07 {0.05} 0.05 {0.04} 0.10 {0.06} 0.06 {0.05} 0.15 {0.10}
Private housing starts 0.22 {0.09} 0.22 {0.21} -0.50 {0.98} 0.32 {0.31} 0.06 {0.07}
Personal consumption expenditures 0.22 {0.16} 0.10 {0.05} 0.06 {0.04} 0.22 {0.16} -0.21 {0.13}
Durable goods expenditures 0.15 {0.11} 0.13 {0.08} -0.06 {0.04} 0.20 {0.22} -0.02 {0.06}
Non-residential fixed investment -0.06 {0.05} -0.06 {0.04} 0.35 {0.68} -0.15 {0.07} -0.17 {0.10}
Residential fixed investment 0.47 {0.90} 0.26 {0.30} -0.20 {0.06} 0.45 {0.67} 0.20 {0.15}
Net exports (% of GDP) -0.20 {0.13} -0.15 {0.11} -0.05 {0.04} -0.07 {0.05} -0.04 {0.06}
Non-farm employment 0.43 {0.25} 0.31 {0.07} 0.40 {0.26} 0.04 {0.07} 0.50 {0.59}
Commodities producer price index -0.31 {0.49} -0.31 {0.66} 0.36 {0.96} -0.29 {0.35} -0.33 {0.48}
Civilian unemployment rate 0.36 {0.12} 0.32 {0.12} -0.47 {1.00} 0.40 {0.46} -0.13 {0.11}
Consumer price index -0.28 {0.39} -0.21 {0.15} -0.04 {0.08} -0.23 {0.21} -0.30 {0.33}
Oil price (spot WTI) USD/barrel 0.14 {0.09} 0.16 {0.12} -0.03 {0.04} 0.14 {0.09} -0.08 {0.07}
Return on 3-month U.S. T-bill -0.02 {0.07} -0.47 {0.31} 0.21 {0.20} -0.32 {0.23} -0.27 {0.23}
Return on 2-year U.S. Treasury -0.49 {0.16} -0.18 {0.20} 0.13 {0.10} -0.24 {0.18} -0.25 {0.11}
Return on 5-year U.S. Treasury 0.43 {0.12} -0.15 {0.12} 0.13 {0.10} 0.18 {0.07} 0.15 {0.08}
U.S. Treasury term spread 10Y-3M -0.10 {0.07} -0.08 {0.05} -0.01 {0.04} -0.17 {0.17} -0.07 {0.07}
ISM manufacturing - inventories -0.16 {0.16} -0.04 {0.04} 0.12 {0.09} -0.07 {0.05} -0.20 {0.21}
ISM manufactoring - new orders 0.06 {0.04} 0.09 {0.05} -0.11 {0.08} 0.09 {0.06} 0.02 {0.05}
Industrial production index 0.81 {0.18} 1.09 {0.30} -0.05 {0.05} 0.65 {0.15} 0.31 {0.09}
Nominal M2 money stock -0.03 {0.04} -0.14 {0.08} 0.13 {0.09} -0.22 {0.18} -0.14 {0.10}
Total industry capacity utilization -0.78 {0.14} -1.04 {0.26} 0.12 {0.05} -0.52 {0.12} -0.32 {0.09}
French-Fama HML factor -0.21 {0.21} -0.19 {0.20} 0.09 {0.06} -0.19 {0.17} 0.00 {0.06}
French-Fama Momentum factor -0.12 {0.08} -0.16 {0.10} 0.11 {0.08} -0.15 {0.10} -0.17 {0.15}
French-Fama SMB factor -0.14 {0.08} -0.11 {0.06} -0.02 {0.03} -0.10 {0.06} 0.00 {0.05}
French-Fama Short-term reversal 0.10 {0.06} 0.06 {0.04} -0.11 {0.06} 0.12 {0.10} -0.07 {0.07}
French-Fama Long-term reversal 0.00 {0.04} 0.02 {0.03} -0.01 {0.03} 0.00 {0.04} 0.12 {0.10}
INS -0.25 {0.04} -0.22 {0.00} 0.09 {0.00} -0.26 {0.02} -0.36 {0.12}
SBD -0.33 {0.21} -0.27 {0.00} 0.32 {0.85} -0.33 {0.10} -0.49 {0.84}
CB -0.22 {0.03} -0.27 {0.00} 0.23 {0.09} -0.19 {0.00} -0.23 {0.01}
HH -0.32 {0.02} 0.00 {0.00} 0.01 {0.00} -0.26 {0.00} 0.23 {0.00}
BUS -0.12 {0.00} -0.22 {0.00} -0.17 {0.00} -0.02 {0.00} -0.07 {0.00}
BNK-MV -0.34 {0.17} -0.33 {0.00} 0.08 {0.00} -0.32 {0.01} -0.13 {0.00}
INS-MV -0.21 {0.01} -0.10 {0.00} -0.03 {0.00} -0.14 {0.00} -0.05 {0.00}
FIN-MV -0.38 {0.49} -0.60 {1.00} 0.23 {0.01} -0.49 {0.86} -0.19 {0.00}

Joint PIP of all Leverage {0.98} {1.00} {0.97} {1.00} {0.99}

Note: Results from static ’BMA 8-LEV’ in-sample forecasts for 5 dependent variables estimated
on time period 1993q3-2010q3 (for explanatory variables: 1992q3-2009q3). All covariates have
been properly stationarized (cf. data appendix). Model sampling for each of the 5 estimations
was carried out with 400,000 burn-ins and 4 million subsequent iterations. The BMA priors are
described in the technical appendix.
Numbers denote posterior standardized conditional coefficients, numbers in parentheses indicate
Posterior Inclusion Probabilities (PIP). Note that the higher its PIP, the more posterior importance
is attributed to that variable (absolute PIP is less relevant than the PIP ranking). For each
dependent variable, the eight largest PIP are highlighted in bold. The last row indicates the
posterior probability for inclusion of at least one leverage variable.
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Table 3.12: Coefficients and Posterior Inclusion Probabilities for in-sample BMA with median leverage
growth

GDP IP UE I Rx

Gross domestic product -0.20 {0.13} -0.05 {0.06} -0.08 {0.06} -0.09 {0.07} -0.04 {0.10}
Government expenditure -0.13 {0.09} -0.06 {0.06} 0.10 {0.08} -0.12 {0.12} -0.04 {0.10}
GDP implicit price deflator -0.16 {0.10} -0.09 {0.06} 0.05 {0.06} -0.27 {0.37} -0.03 {0.12}
Gross private domestic investment -0.26 {0.11} 0.00 {0.05} -0.06 {0.05} -0.25 {0.16} 0.04 {0.10}
Gross gov’t saving (% of GDP) 0.04 {0.05} -0.05 {0.05} 0.10 {0.07} 0.01 {0.05} 0.08 {0.11}
Private housing starts 0.16 {0.08} 0.25 {0.24} -0.51 {0.96} 0.28 {0.17} 0.09 {0.13}
Personal consumption expenditures 0.12 {0.10} 0.02 {0.06} 0.04 {0.05} 0.15 {0.12} -0.10 {0.12}
Durable goods expenditures 0.15 {0.12} 0.12 {0.08} -0.09 {0.06} 0.18 {0.21} 0.01 {0.09}
Non-residential fixed investment -0.16 {0.08} -0.12 {0.06} 0.36 {0.28} -0.24 {0.12} -0.07 {0.11}
Residential fixed investment 0.44 {0.94} 0.36 {0.74} -0.26 {0.13} 0.49 {0.89} 0.16 {0.17}
Net exports (% of GDP) -0.18 {0.13} -0.07 {0.06} -0.02 {0.05} 0.00 {0.05} -0.05 {0.10}
Non-farm employment 0.20 {0.08} 0.24 {0.11} 0.51 {0.79} 0.02 {0.06} 0.07 {0.11}
Commodities producer price index -0.32 {0.58} -0.42 {0.95} 0.36 {0.90} -0.33 {0.52} -0.21 {0.26}
Civilian unemployment rate 0.32 {0.24} 0.47 {0.71} -0.44 {0.99} 0.56 {0.87} 0.02 {0.10}
Consumer price index -0.29 {0.37} -0.09 {0.08} 0.12 {0.11} -0.25 {0.20} -0.25 {0.38}
Oil price (spot WTI) USD/barrel 0.16 {0.18} 0.18 {0.27} -0.06 {0.06} 0.19 {0.28} -0.02 {0.10}
Return on 3-month U.S. T-bill -0.02 {0.05} -0.07 {0.07} 0.21 {0.16} -0.13 {0.09} -0.18 {0.17}
Return on 2-year U.S. Treasury -0.22 {0.12} -0.21 {0.28} 0.19 {0.29} -0.25 {0.48} -0.37 {0.36}
Return on 5-year U.S. Treasury 0.08 {0.07} -0.25 {0.54} 0.18 {0.24} 0.05 {0.10} 0.29 {0.18}
U.S. Treasury term spread 10Y-3M -0.14 {0.13} -0.06 {0.06} 0.06 {0.06} -0.15 {0.14} -0.12 {0.16}
ISM manufacturing - inventories -0.14 {0.13} -0.03 {0.05} 0.08 {0.07} -0.06 {0.06} -0.08 {0.11}
ISM manufactoring - new orders 0.06 {0.05} 0.15 {0.14} -0.11 {0.10} 0.09 {0.07} 0.02 {0.09}
Industrial production index 0.42 {0.13} 0.34 {0.26} -0.18 {0.07} 0.32 {0.22} 0.62 {0.19}
Nominal M2 money stock -0.02 {0.04} -0.25 {0.65} 0.14 {0.11} -0.25 {0.53} -0.11 {0.13}
Total industry capacity utilization -0.34 {0.08} 0.04 {0.09} 0.14 {0.07} 0.24 {0.16} -0.54 {0.18}
French-Fama HML factor -0.19 {0.24} -0.15 {0.20} 0.15 {0.19} -0.14 {0.15} -0.06 {0.11}
French-Fama Momentum factor -0.08 {0.06} -0.12 {0.08} 0.15 {0.12} -0.09 {0.08} -0.15 {0.19}
French-Fama SMB factor -0.06 {0.06} 0.00 {0.05} -0.02 {0.05} 0.00 {0.05} 0.01 {0.09}
French-Fama Short-term reversal 0.13 {0.13} 0.07 {0.06} -0.11 {0.09} 0.15 {0.19} 0.02 {0.09}
French-Fama Long-term reversal -0.03 {0.05} -0.03 {0.05} -0.01 {0.05} -0.04 {0.05} 0.06 {0.11}
MED-LEV -0.45 {0.99} -0.53 {0.99} 0.19 {0.14} -0.51 {0.98} -0.21 {0.24}

Note: Results from static ’BMA MED-LEV’ in-sample forecasts for 5 dependent variables estimated
on time period 1993q3-2010q3 (for explanatory variables: 1992q3-2009q3). All covariates have been
properly stationarized (cf. data appendix). Model sampling for each of the 5 estimations was carried
out with 400,000 burn-ins and 4 million subsequent iterations. The BMA priors are described in
the technical appendix.
Numbers denote posterior standardized conditional coefficients, numbers in parentheses indicate
Posterior Inclusion Probabilities (PIP). For each dependent variable, the eight largest PIP are
highlighted in bold.
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Table 3.13: Mean coefficients and Posterior Inclusion Probabilities for out-of-sample BMA with eight
sectoral leverages

GDP IP UE I Rx

Gross domestic product -0.19 {0.10} -0.06 {0.07} -0.13 {0.09} -0.14 {0.07} -0.01 {0.07}
Government expenditure -0.10 {0.07} -0.03 {0.05} 0.02 {0.05} -0.12 {0.07} 0.11 {0.09}
GDP implicit price deflator -0.35 {0.22} -0.38 {0.27} 0.28 {0.24} -0.22 {0.10} -0.12 {0.10}
Gross private domestic investment -0.08 {0.08} -0.02 {0.05} -0.10 {0.06} -0.21 {0.11} 0.03 {0.07}
Gross gov’t saving (% of GDP) 0.15 {0.10} 0.13 {0.08} -0.16 {0.11} 0.12 {0.07} 0.04 {0.09}
Private housing starts 0.08 {0.07} -0.04 {0.06} 0.00 {0.05} 0.12 {0.09} 0.05 {0.08}
Personal consumption expenditures 0.15 {0.10} -0.03 {0.07} -0.20 {0.11} 0.12 {0.11} -0.20 {0.12}
Durable goods expenditures 0.15 {0.10} 0.06 {0.05} -0.08 {0.06} 0.27 {0.17} 0.12 {0.09}
Non-residential fixed investment 0.05 {0.07} 0.04 {0.06} -0.21 {0.10} 0.05 {0.08} -0.10 {0.09}
Residential fixed investment 0.41 {0.26} 0.21 {0.17} -0.45 {0.17} 0.47 {0.23} 0.13 {0.11}
Net exports (% of GDP) -0.13 {0.10} -0.13 {0.10} 0.04 {0.12} 0.14 {0.14} -0.07 {0.10}
Non-farm employment 0.92 {0.39} 0.34 {0.17} -0.58 {0.55} 0.49 {0.21} 0.22 {0.17}
Commodities producer price index -0.08 {0.10} -0.29 {0.25} 0.15 {0.10} -0.11 {0.09} 0.00 {0.08}
Civilian unemployment rate 0.36 {0.20} -0.06 {0.09} -0.23 {0.20} 0.43 {0.18} 0.05 {0.13}
Consumer price index -0.25 {0.15} -0.20 {0.11} 0.19 {0.10} -0.11 {0.07} -0.11 {0.09}
Oil price (spot WTI) USD/barrel 0.04 {0.09} -0.07 {0.06} 0.07 {0.07} -0.05 {0.09} 0.00 {0.07}
Return on 3-month U.S. T-bill -0.64 {0.46} -0.63 {0.49} 0.59 {0.70} -0.70 {0.62} -0.11 {0.13}
Return on 2-year U.S. Treasury 0.42 {0.27} 0.12 {0.10} 0.49 {0.18} 0.13 {0.11} -0.22 {0.18}
Return on 5-year U.S. Treasury 0.33 {0.20} -0.19 {0.08} -0.48 {0.18} 0.18 {0.12} 0.40 {0.22}
U.S. Treasury term spread 10Y-3M 0.05 {0.07} 0.13 {0.08} -0.11 {0.09} 0.09 {0.07} 0.04 {0.09}
ISM manufacturing - inventories -0.13 {0.10} -0.02 {0.05} 0.04 {0.05} -0.06 {0.07} 0.03 {0.07}
ISM manufactoring - new orders 0.01 {0.07} 0.08 {0.06} 0.09 {0.06} 0.11 {0.07} -0.09 {0.09}
Industrial production index 0.64 {0.16} 0.87 {0.38} -0.41 {0.24} 0.40 {0.25} 0.77 {0.22}
Nominal M2 money stock 0.13 {0.09} 0.21 {0.16} -0.03 {0.11} 0.08 {0.07} -0.22 {0.12}
Total industry capacity utilization -0.59 {0.16} -0.95 {0.23} 0.03 {0.14} -0.31 {0.17} -0.74 {0.19}
French-Fama HML factor -0.18 {0.17} 0.11 {0.10} -0.16 {0.22} -0.10 {0.13} -0.08 {0.09}
French-Fama Momentum factor -0.07 {0.07} -0.21 {0.16} 0.14 {0.09} -0.12 {0.07} -0.05 {0.08}
French-Fama SMB factor -0.11 {0.08} 0.05 {0.06} 0.03 {0.04} -0.03 {0.06} 0.00 {0.07}
French-Fama Short-term reversal 0.19 {0.14} 0.12 {0.08} -0.15 {0.10} 0.14 {0.08} -0.07 {0.08}
French-Fama Long-term reversal -0.09 {0.11} 0.01 {0.08} 0.07 {0.08} -0.05 {0.08} 0.06 {0.07}
INS -0.39 {0.10} -0.37 {0.08} 0.33 {0.08} -0.48 {0.19} -0.53 {0.25}
SBD -0.33 {0.16} -0.10 {0.01} 0.34 {0.21} -0.20 {0.03} -0.34 {0.07}
CB -0.29 {0.15} -0.47 {0.44} 0.32 {0.23} -0.46 {0.21} -0.44 {0.12}
HH -0.39 {0.18} -0.41 {0.18} 0.35 {0.06} -0.33 {0.10} 0.57 {0.37}
BUS -0.30 {0.05} -0.42 {0.14} 0.34 {0.05} -0.34 {0.07} -0.25 {0.03}
BNK-MV -0.50 {0.17} -0.27 {0.01} 0.28 {0.05} -0.45 {0.22} -0.09 {0.02}
INS-MV -0.11 {0.02} 0.10 {0.01} -0.04 {0.02} -0.15 {0.01} 0.10 {0.02}
FIN-MV 0.00 {0.02} -0.29 {0.03} -0.07 {0.02} -0.03 {0.01} 0.06 {0.01}
Joint PIP of all Leverage {0.87} {0.90} {0.75} {0.87} {0.89}

Note: Results from rolling ’BMA 8-LEV’ 1-year-ahead out-of-sample forecasts for 5 dependent variables over time

period 1993q3 to 2010q3. All covariates have been properly stationarized (cf. data appendix). Model sampling for

each of the 69 × 5 forecasts was carried out with 400,000 burn-ins and 2 million iterations. The BMA priors are

described in the technical appendix. Numbers denote the arithmetic mean (over 69 rolling samples) of posterior

standardized conditional coefficients.

Numbers in parentheses indicate mean Posterior Inclusion Probabilities (PIP) over the 69 rolling samples. Note

that the higher its PIP, the more posterior importance is attributed to that variable (absolute PIP is less relevant

than the PIP ranking). For each dependent variable, the eight largest PIP are highlighted in bold. The last row

indicates the posterior probability for inclusion of at least one leverage variable.

88



3.C Charts and Tables

Table 3.14: Mean coefficients and Posterior Inclusion Probabilitites for out-of-sample BMA setting
with median leverage growth

GDP IP UE I Rx

Gross domestic product -0.17 {0.10} -0.17 {0.11} -0.19 {0.14} -0.13 {0.09} 0.02 {0.10}
Government expenditure -0.10 {0.09} -0.02 {0.07} 0.01 {0.05} -0.14 {0.09} 0.11 {0.12}
GDP implicit price deflator -0.33 {0.22} -0.47 {0.33} 0.27 {0.21} -0.20 {0.11} -0.06 {0.11}
Gross private domestic investment -0.08 {0.09} -0.02 {0.07} -0.06 {0.06} -0.21 {0.12} 0.01 {0.10}
Gross gov’t saving (% of GDP) 0.16 {0.12} 0.14 {0.11} -0.16 {0.12} 0.11 {0.08} 0.04 {0.11}
Private housing starts 0.05 {0.08} -0.03 {0.07} 0.04 {0.05} 0.10 {0.09} 0.01 {0.10}
Personal consumption expenditures 0.12 {0.11} -0.11 {0.08} -0.12 {0.08} 0.12 {0.11} -0.17 {0.14}
Durable goods expenditures 0.19 {0.15} 0.14 {0.08} -0.05 {0.05} 0.21 {0.15} 0.09 {0.11}
Non-residential fixed investment 0.07 {0.08} -0.01 {0.08} -0.19 {0.11} 0.06 {0.08} 0.04 {0.10}
Residential fixed investment 0.42 {0.27} 0.39 {0.21} -0.45 {0.19} 0.50 {0.26} 0.01 {0.13}
Net exports (% of GDP) -0.09 {0.10} 0.02 {0.11} -0.05 {0.09} 0.21 {0.14} 0.04 {0.12}
Non-farm employment 0.79 {0.36} 0.47 {0.22} -0.64 {0.65} 0.35 {0.25} 0.42 {0.26}
Commodities producer price index 0.01 {0.10} -0.22 {0.17} 0.07 {0.10} -0.01 {0.08} 0.03 {0.11}
Civilian unemployment rate 0.14 {0.15} 0.09 {0.15} -0.33 {0.34} 0.38 {0.25} 0.04 {0.14}
Consumer price index -0.26 {0.17} -0.23 {0.14} 0.23 {0.12} -0.07 {0.08} -0.06 {0.10}
Oil price (spot WTI) USD/barrel 0.00 {0.08} 0.02 {0.07} 0.03 {0.05} 0.01 {0.06} 0.02 {0.09}
Return on 3-month U.S. T-bill -0.64 {0.41} -0.53 {0.45} 0.63 {0.79} -0.66 {0.72} -0.37 {0.21}
Return on 2-year U.S. Treasury 0.52 {0.26} 0.30 {0.15} 0.34 {0.11} 0.20 {0.11} -0.04 {0.20}
Return on 5-year U.S. Treasury 0.21 {0.13} -0.31 {0.14} -0.30 {0.10} 0.06 {0.08} 0.26 {0.30}
U.S. Treasury term spread 10Y-3M 0.05 {0.08} 0.20 {0.14} -0.03 {0.06} 0.11 {0.08} 0.03 {0.12}
ISM manufacturing - inventories -0.06 {0.07} 0.03 {0.07} 0.04 {0.05} -0.02 {0.06} 0.00 {0.09}
ISM manufactoring - new orders 0.04 {0.09} 0.14 {0.10} 0.11 {0.07} 0.13 {0.09} -0.06 {0.11}
Industrial production index 0.27 {0.13} 0.47 {0.18} -0.27 {0.17} 0.29 {0.20} 0.24 {0.19}
Nominal M2 money stock 0.18 {0.12} 0.13 {0.14} -0.11 {0.13} 0.07 {0.08} -0.13 {0.12}
Total industry capacity utilization -0.20 {0.13} -0.22 {0.13} -0.16 {0.16} -0.16 {0.22} -0.19 {0.17}
French-Fama HML factor -0.22 {0.20} -0.23 {0.23} -0.09 {0.21} -0.11 {0.14} -0.06 {0.11}
French-Fama Momentum factor -0.07 {0.08} -0.25 {0.16} 0.13 {0.09} -0.09 {0.07} -0.08 {0.12}
French-Fama SMB factor -0.10 {0.10} 0.00 {0.10} 0.03 {0.05} -0.02 {0.07} -0.02 {0.10}
French-Fama Short-term reversal 0.23 {0.18} 0.13 {0.11} -0.13 {0.09} 0.13 {0.09} -0.08 {0.11}
French-Fama Long-term reversal -0.04 {0.11} 0.08 {0.12} 0.04 {0.12} 0.01 {0.08} 0.00 {0.09}
MED-LEV -0.43 {0.45} -0.45 {0.48} 0.35 {0.39} -0.46 {0.62} -0.03 {0.28}

Note: Results from rolling ’BMA MED-LEV’ 1-year-ahead out-of-sample forecasts for 5 dependent
variables over time period 1993q3 to 2010q3. All covariates have been properly stationarized
(cf. data appendix). Model sampling for each of the 69 × 5 forecasts was carried out with
400,000 burn-ins and 2 million iterations. The BMA priors are described in the technical appendix.
Numbers denote the arithmetic mean (over 69 rolling samples) of posterior standardized conditional
coefficients.
Numbers in parentheses indicate mean Posterior Inclusion Probabilities (PIP) over the 69 rolling
samples. For each dependent variable, the eight largest PIP are highlighted in bold.
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Table 3.15: BMA coefficients and posterior inclusion probabiltities for the conditional output variabil-
ity (forecast errors from model ’F’ )

GDP IP UE I Rx

Gross domestic product -0.11 {0.14} 0.12 {0.15} -0.27 {0.26} 0.03 {0.14} 0.25 {0.26}
Government expenditure -0.05 {0.11} -0.01 {0.11} -0.02 {0.11} 0.02 {0.14} 0.01 {0.09}
GDP implicit price deflator -0.25 {0.30} -0.25 {0.36} -0.17 {0.21} -0.10 {0.17} -0.15 {0.20}
Gross private domestic investment -0.22 {0.21} 0.02 {0.12} -0.03 {0.13} -0.08 {0.16} 0.06 {0.11}
Gross gov’t saving (% of GDP) -0.19 {0.21} -0.12 {0.15} -0.04 {0.12} -0.15 {0.23} -0.28 {0.62}
Private housing starts 0.10 {0.13} 0.10 {0.15} 0.03 {0.12} 0.21 {0.34} 0.01 {0.09}
Personal consumption expenditures -0.01 {0.17} -0.08 {0.14} -0.27 {0.38} 0.00 {0.13} 0.09 {0.11}
Durable goods expenditures 0.26 {0.55} -0.15 {0.20} -0.12 {0.19} -0.04 {0.14} 0.00 {0.09}
Non-residential fixed investment -0.32 {0.36} 0.16 {0.16} 0.28 {0.30} 0.07 {0.15} -0.21 {0.17}
Residential fixed investment -0.02 {0.12} -0.29 {0.45} -0.21 {0.26} -0.07 {0.16} -0.12 {0.12}
Net exports (% of GDP) 0.09 {0.13} 0.11 {0.16} 0.03 {0.11} 0.05 {0.14} 0.07 {0.11}
Non-farm employment -0.40 {0.35} -0.23 {0.17} -0.16 {0.15} -0.07 {0.16} -0.37 {0.31}
Commodities producer price index 0.08 {0.13} 0.41 {0.80} 0.29 {0.51} 0.12 {0.18} -0.01 {0.10}
Civilian unemployment rate 0.36 {0.34} 0.04 {0.12} 0.02 {0.12} 0.07 {0.16} 0.04 {0.11}
Consumer price index 0.27 {0.27} 0.17 {0.19} 0.13 {0.20} 0.05 {0.15} 0.05 {0.10}
Oil price (spot WTI) USD/barrel 0.29 {0.81} 0.07 {0.12} -0.13 {0.18} 0.13 {0.24} 0.08 {0.12}
Return on 3-month U.S. T-bill 0.21 {0.28} 0.24 {0.31} -0.01 {0.12} 0.19 {0.29} 0.37 {0.89}
Return on 2-year U.S. Treasury 0.37 {0.39} 0.04 {0.12} 0.21 {0.35} 0.29 {0.30} -0.05 {0.12}
Return on 5-year U.S. Treasury -0.35 {0.29} -0.05 {0.11} 0.17 {0.26} -0.25 {0.24} -0.09 {0.12}
U.S. Treasury term spread 10Y-3M 0.11 {0.16} -0.03 {0.10} -0.07 {0.13} 0.00 {0.14} 0.03 {0.09}
ISM manufacturing - inventories 0.06 {0.11} 0.02 {0.10} 0.10 {0.14} 0.09 {0.18} 0.05 {0.10}
ISM manufactoring - new orders 0.10 {0.14} -0.07 {0.13} -0.17 {0.29} -0.07 {0.16} 0.07 {0.11}
Industrial production index -0.08 {0.12} -0.24 {0.25} -0.22 {0.20} -0.12 {0.24} -0.04 {0.10}
Nominal M2 money stock -0.02 {0.09} 0.04 {0.10} -0.15 {0.21} -0.09 {0.17} 0.10 {0.12}
Total industry capacity utilization -0.17 {0.15} -0.47 {0.73} -0.25 {0.26} -0.34 {0.46} -0.08 {0.11}
French-Fama HML factor 0.20 {0.43} 0.24 {0.56} 0.16 {0.25} 0.08 {0.17} 0.02 {0.09}
French-Fama Momentum factor -0.09 {0.13} 0.12 {0.16} -0.03 {0.13} 0.06 {0.16} -0.04 {0.10}
French-Fama SMB factor -0.10 {0.15} -0.08 {0.14} -0.16 {0.27} -0.12 {0.21} 0.06 {0.10}
French-Fama Short-term reversal -0.05 {0.11} 0.11 {0.18} -0.08 {0.13} -0.06 {0.15} 0.15 {0.25}
French-Fama Long-term reversal 0.04 {0.10} -0.14 {0.23} -0.17 {0.29} 0.07 {0.16} 0.11 {0.16}
MED-LEV 0.31 {0.55} 0.23 {0.32} 0.37 {0.77} 0.32 {0.59} 0.49 {0.98}

Note: Results from Bayesian Model Averaging over regressions of absolute forecast errors for GDP,
industrial production (IP), the unemployment rate (UE), gross investment (I) and the equity excess
return (Rx), on the variables shown in the first column (a constant is included in all regressions).
Sample period is 1992q3-2009q3 (1993q3-2010q3 for the dependent variable). Numbers denote
posterior standardized conditional coefficients, numbers in parentheses indicate Posterior Inclusion
Probabilities (PIP). Note that the higher its PIP, the more posterior importance is attributed to
that variable. For each dependent variable, the eight largest PIP are highlighted in bold.
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4.1 Introduction

When confronted with a large number of explanatory variables relative to sample size, two ap-
proaches are very popular in econometrics. These are, on the one hand, model averaging techniques
and factor model approaches on the other.1 Both approaches come with limitations. Model aver-
aging, be it Bayesian or frequentist, has been criticized as being susceptible to over-fitting (Stock
and Watson, 2006) and to lack robustness (e.g., Ciccone and Jarociński, 2010). These problems
are of course manifestations of the underlying difficulties of estimation and inference in a setting
with many, potentially collinear explanatory variables. Moreover, the computational cost of model
averaging is in general large and in applications of typical scale the model space is too large to be
fully considered in the averaging procedure. Thus, model averaging often resorts to MCMC sam-
pling schemes, whose approximation difficulties under highly correlated covariates are frequently
considered to introduce bias and robustness problems (e.g., Clyde et al., 2010). In contrast, for
factor model approaches – typically based on principal components analysis – the computational
simplicity and robust performance are considered as main advantages. Whilst factor models are
often used for predictions (e.g., Bai and Ng, 2002; Forni et al., 2000), the use of principal com-
ponents rather than the original variables complicates an assessment of the individual variables’
importance in explaining the dependent variable.

In this paper we present an approach that combines the virtues of both model averaging and factor
models. The approach is motivated and particularly useful for the following prototypical situation:
In many economic applications, the focus is only on a relatively small set of (possibly competing)
regressors, whereas a large set of other regressors is included to control for all unmodeled effects.
In such a situation disentangling the effect of the focus variables is difficult when the total number
of variables is large compared to the sample size (or even larger than the sample size). In principle,
consistent model averaging estimators (cf. Fernández et al., 2001a) allow to asymptotically quantify
the effects of the focus variables, but in finite samples two problems arise. First, model averaging
over both focus and control variables takes into account models in which potentially important
control variables are not included – leading to ensuing omitted variables biases in the coefficient
estimators corresponding to the focus variables. Second, and in a sense the opposite to the first
problem, Bayesian model averaging with loose priors may lead to large effective model sizes with
the ensuing large estimator variances, as has been pointed out by Ciccone and Jarociński (2010).
Although several contributions (e.g., Sala-i-Martin et al., 2004; Ley and Steel, 2009) address this
feature through ’model prior’ structures that allow to steer prior expected model parsimony, such
priors at most allow the researcher to favor a particular side in the trade-off between parsimony on
the one hand and the inclusion of as many potentially relevant variables as possible on the other.

The simplest approach to overcome the above mentioned problems of model averaging is – in the
discussed setup with ex ante defined focus and control variables – to: (i) consider model averaging
only over the focus variables and (ii) ‘regularize’ the regression problem by including principal
components computed from the control variables throughout. By conditioning on a (small) number
of principal components the effects of the control variables are effectively taken into account (see
also Section 2.2). Clearly, the effective number of parameters is reduced by including principal
components computed from the control variables rather than the control variables themselves,
which will exhibit positive effects on the robustness of model averaging estimators. Moreover, this
approach leads to a drastic reduction in the model space and thus in its computational cost. In
the approach described so far the number of principal components to be included is yet to be

1Of course, there are also other ‘regularization’ approaches and model selection techniques like (e.g., adaptive
LASSO estimators). Primarily for the sake of briefness, this paper will concentrate on the intersection between model
averaging and factor models.
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determined, with this choice effectively corresponding to a positioning on the trade-off between
bias and variance of the estimators. The literature typically resorts to various ad-hoc schemes to
determine the number of principal components to be included (see the discussion in Section 2.3).
As is exemplified in the simulations in Section 3 these simple procedures still risk to set the number
of principal components too low or too high with the ensuing implications for bias and variance.

In order to overcome this limitation with respect to the number of principal components we pro-
pose to instead apply model averaging over both the focus variables and the number of principal
components to consider. We refer to this approach as principal components-model averaging (PC-
MA). This combination of model averaging and factor modeling via principal components has three
main advantages: First, conditioning each sub-model for the focus variables on the principal com-
ponents computed from the control variables is a parsimonious way of reducing potential omitted
variables biases for the coefficients corresponding to the focus variables.1 Thus, PC-MA leads to
parsimonious models without the danger of large omitted variables biases, which is a danger for
model averaging procedures where averaging is performed over all variables, in particular when
in a Bayesian framework the priors are set to small model sizes. Second, averaging also over the
principal components leads to a data-driven choice concerning the number of principal components
to be included. Here it is worth noting that our proposed prior is flexible enough to reflect a
researcher’s preferences concerning the inclusion of principal components in a continuous fashion.
Third, PC-MA enormously reduces the model space. Denoting the number of focus variables with
kF and the number of control variables with kC , in standard model averaging the total number
of models is 2kF+kC , whereas PC-MA necessitates the evaluation of not more than 2kF × (kC + 1)
models. This means that one does not need to apply approximate MCMC sampling schemes and
thereby evades robustness problems that stem from poor mixing of MCMC samplers under a high
degree of correlation in the data (cf. Clyde et al., 1996, for a more detailed discussion).

To the best of our knowledge previous research on combining model averaging with principal com-
ponents is limited to very few contributions. Koop and Potter (2004) perform Bayesian model
averaging over principal components computed from all variables and employ their approach to
a macroeconomic forecasting exercise along the lines of Stock and Watson (2002). Thus, in our
terms, they perform a variant of PC-MA with a zero number of focus variables. There is another
important difference, as Koop and Potter (2004) do not take into account the inherent hierarchical
structure of the principal components (which further reduces the computational cost, as we will
see in Section 4.3.2) and consider only a uniform prior. The approach of Magnus et al. (2010)
employs a distinction between focus and control or auxiliary variables, but is in a sense ‘dual’
to our approach in that they compute principal components from the focus variables after condi-
tioning throughout on (a large number of) control variables. Including a fixed number of control
variables is of course very restrictive and furthermore by doing so the researcher risks to end up
in an unfavorable point on the bias variance trade-off (especially if the number of control variables
is large compared to the sample size). Wagner and Hlouskova (2010) consider model averaging in
principal components augmented regressions with a fixed number of principal components included
throughout and averaging only over the focus variables. Our paper can be seen as an extension
of Koop and Potter (2004) and Wagner and Hlouskova (2010), since (i) we develop a framework
to jointly average over both principal components and untransformed variables, and (ii) consider
both Bayesian and frequentist model averaging. Finally, the papers by De Mol et al. (2008) and
Stock and Watson (2011) are related in that they asses factor models versus Bayesian shrinkage
estimators, but they do not directly consider model averaging.

1Given that the principal components are mutually orthogonal also implies that the regressions are well-behaved
if multi-collinearity between the focus variables and the principal components is not an issue and, of course, if the
focus variables are not multi-collinear. Both can easily be checked in any given application.
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The paper is organized as follows: Section 4.2 presents the econometric theory and discusses model
averaging, principal components augmented regressions and a combination thereof. Section 4.3.2
introduces our PC-MA approach. Section 4.4 presents the simulation design and results. Section 4.5
is devoted to an analysis of financial indicators as an alternative to established macroeconomic
predictors of GDP growth by means of the PC-MA approach, and a comparison with alternative
approaches. Finally, Section 4.6 briefly summarizes and concludes.

4.2 Description of the Econometric Approach

This section starts by reviewing model averaging and principal components augmented regressions
in the first two subsections. It then proceeds to discuss our framework intended to combine the
favorable aspects of both, where we consider two cases: (i) model averaging only over the focus
variables conditional on a fixed set of principal components computed from the control variables,
and (ii) model averaging over both the focus variables and the principal components (PC-MA).

4.2.1 Model Averaging

We consider linear regression models Mj in partitioned format:

y = XF,jβF,j +XCβC,j + uj , (1)

with y ∈ RN denoting the dependent variable, XC ∈ RN×kC a fixed set of control variables and
uj ∈ RN the error vector. Model uncertainty is present about which focus variables XF,j ∈ RN×kF,j
from XF ∈ RN×kF should be included in the regression. Under a Bayesian approach, each of
these selections, corresponding to a specific model Mj , is assigned a prior model probability p(Mj).
Using Bayes’ theorem updating the prior probabilities with the data leads to the posterior model
probabilities (see, e.g., Leamer, 1978; Hoeting et al., 1999):

p(Mj |y) =
p(y|Mj)p(Mj)∑
i p(y|Mi)p(Mi)

, (2)

Here, p(y|Mj) denotes the marginal likelihood of Mj . Given the posterior model probabilities the
posterior distribution of any model statistic θ is then obtaining by integration over the model space.

p(θ|y) =
∑
j

p(θ|Mj , y)p(Mj |y). (3)

Given these basic considerations it is e.g. straightforward to obtain the posterior distributions of
the model average coefficients βFj corresponding to the focus variables. The fact that the posterior
distribution is computed (if the whole model space is considered) to 50% of models that do not
include any particular focus variable implies that model averaging has a shrinkage property that
helps to keep the effective model size small.

Frequentist model averaging operates along the same lines without invoking a Bayesian rationale
and using different terminology. The model weights (corresponding in a Bayesian framework to the
marginal likelihoods p(y|Mj) are typically chosen according to some information criterion with an
optional weighting factor (corresponding to p(Mj) in a Bayesian setting). Examples of this approach
include Bayesian averaging of classical estimates (BACE) as in Sala-i-Martin et al. (2004), the
Mallows model averaging (MMA) approach of Hansen (2007) or the averaging procedures outlined
in Claeskens and Hjort (2008). With respect to frequentist model averaging we will focus in the
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simulations and the empirical application on the smoothed BIC (S-BIC) model averaging scheme
discussed in Claeskens and Hjort (2008), which is in many respects similar to BACE. S-BIC model
averaging computes the model weights as proportional to the BIC value of the respective model
(scaled or smoothed by the sum of the BIC values of all models), i.e.

wS−BIC(Mj) ∝ exp

(
−1

2
BIC(Mj)

)
∝ N−

kj
2 (1−R2

j )
−N

2 , (4)

where kj is the number of variables included in Mj and R2
j is the corresponding R2.

The Bayesian model averaging literature provides many alternative specifications of the marginal
likelihoods p(y|Mj), see e.g. Hoeting et al. (1999). Following Fernández et al. (2001a), however,
most contributions concentrate on the Zellner (1986) g-prior in the normal-gamma conjugate frame-
work. This setting is conceptually closely related to OLS with shrinkage. Recent research (for an
overview see Ley and Steel, 2011b) has extended the g-prior framework by introducing hyper-priors
for the shrinkage parameter. In this paper we also use such a ‘hyper-g’ prior framework by using
a beta-prior for the shrinkage parameter (as introduced in Liang et al., 2008).

With respect to the other ingredient in Bayesian model averaging, i.e. the prior model probabilities
p(Mj), the standard choice in the literature is to use a uniform prior attaching the same probability
to each and every model. Several authors (e.g., Sala-i-Martin et al., 2004; Ley and Steel, 2009)
have criticized this approach since it translates into a prior model size distribution that is tightly
concentrated around a mode at half of the focus variables that is averaged over (not counting the
included control variables for the moment), which may not be desirable in a situation with a large
number of variables relative to sample size. We implement model averaging with both a uniform
model prior as well as the models priors proposed by Sala-i-Martin et al. (2004) and Ley and Steel
(2009) that allows to control the prior model size distribution.1

4.2.2 Principal Components-augmented Regressions

We consider for the moment the full regression including all focus variables XF and the control
variables XC , i.e.

y = XFβF +XCβC + u. (5)

Without loss of generality we assume that all regressors have mean zero, or equivalently that an
intercept is included. The information for regression (5) contained inXC is equivalently summarized
in the set of (orthogonal) principal components corresponding to XC , as described next. The
principal components are the set of transformed variables X̆C = XCO, with O ∈ RkC×kC computed
from the eigenvalue decomposition of ΣXC = X ′CXC (due to the assumption of zero means):

ΣXC = X ′CXC = OΛO′ = [O1 O2]

[
Λ1 0
0 Λ2

] [
O′1
O′2

]
= O1Λ1O

′
1 +O2Λ2O

′
2, (6)

where O′O = OO′ = IkC and Λ = diag(λ1, . . . , λkC ), λi ≥ λi+1 for i = 1, . . . , kC − 1. The
partitioning into variables with subscripts 1 and 2 in (6) will become clear in the discussion below.
From (6) the orthogonality of the variables in X̆C is immediate, since X̆ ′CX̆C = Λ.

Let us consider the case of multi-collinearity in XC first (which e.g. necessarily occurs when
kC > N) and let us denote the rank of XC with r. Take Λ1 ∈ Rr×r, hence Λ2 = 0 and X ′2X2 =

1This will become a more relevant concern in section 4.3.2.
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O1Λ1O
′
1. The space spanned by the columns of XC ∈ RN×kC coincides with the space spanned

by the orthogonal regressors X̃C = XCO1 ∈ RN×r, i.e. with the space spanned by the r principal
components. Thus, in this case regression (5) is equivalent to the regression

y = XFβF + X̃C β̃C + u (7)

in the sense that both regressions lead to exactly the same fitted values and residuals. Furthermore,
in case [XF X̃C ] has full rank, regression (7) leads to unique coefficient estimates of βF and β̃C .
Therefore, the use of principal components is one computationally efficient way of overcoming multi-
collinearity. The facts discussed above are, of course, well known results from linear regression
theory.

Using principal components in case of full rank of XC and hence of ΣXC , however, also has a clear
interpretation and motivation. In such a situation replacing XC by the first r principal components
X̃C leads to a regression where the set of regressors X̃C spans that r-dimensional subspace of the
space spanned by the columns of XC which minimizes the approximation error to the full space
in a least squares sense. More formally the following holds true, resorting here to the population
level.1 Let xC ∈ RkC be a mean zero random vector with covariance matrix ΣXC (using here the
same notation for both the sample and the population covariance matrix for simplicity). For a
given value of r consider a decomposition of xC into a factor component and a noise component,
i.e. a decomposition xC = Lf + ν, where f ∈ Rr is random, L ∈ RkC×r is non-random and
ν ∈ RkC is noise. If the decomposition is such that the factors f and the noise ν are uncorrelated,
i.e. orthogonal, then ΣXC = LΣfL

′ + Σν , with Σf denoting the covariance matrix of f and Σν

denoting the covariance matrix of ν. Principal components analysis performs such an orthogonal
decomposition of xC into Lf and ν so that the noise component is as small as possible, i.e. it
minimizes E(ν ′ν) = tr(Σν). As is well known, the solution is given by f = O′1xC , L = O1, with
O1 ∈ RkC×r and ν = O2O

′
2xC , using the same notation for the spectral decomposition as above.

In many applications it is advisable to compute the principal components not from the covariance
matrix but from the correlation matrix. In data sets with variables of substantially different
magnitudes computing the principal components based on the covariance matrix leads to essentially
fitting the ‘large’ variables, whereas the computation based on the correlation matrix corrects
for scaling differences and leads to a scale-free computation of the principal components. For
this reason, we will only consider principal components computed from the correlation matrix
(respectively, standardize indicators to unit variance) throughout this paper. To be precise, in
this case a so-called weighted principal components problem is solved in which the function to be
minimized is given by E(ν ′Qν) = tr(QΣν) with Q = diag(σ−2

xC ,1
, . . . , σ−2

xC ,kC
).2 This leads to f =

O′1Q
1/2xC , L = Q−1/2O1 and ν = Q−1/2O2O

′
2Q

1/2xC . This implies that the principal components
to be included in the regressions are given by X̃C = XCQ

1/2O1.

Including only r principal components X̃C instead of all regressors XC has a clear interpretation:
the principal components augmented regression (PCAR) includes ‘as much information as possible’
with r linearly independent regressors contained in the space spanned by the columns of XC . We
write the PCAR as:

y = XFβF + X̃C β̃C + ũ, (8)

1I.e. we now consider the kC-dimensional random vector xC for which a sample XC of size N is available.
2Performing the spectral decomposition on a correlation matrix allows for another simple descriptive criterion

concerning the number of principal components. By construction the trace of a correlation matrix equals its dimension,
i.e. is equal to kC . Therefore, if all kC eigenvalues were equally large, they all would equal 1. This suggests to include
as many principal components as there are eigenvalues larger than 1, i.e. to consider the eigenvalues larger than 1 as
big and those smaller than 1 as small. The results correspond closely to those obtained with VPCα with α = 0.2.
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neglecting in the notation the dependence upon the (chosen) number of principal components r,
but indicating by using ũ the fact that the residuals of (8) in general differ from the residuals
of (7). Including only the information contained in the first r principal components of XC in the
regression when the rank of XC is larger than r of course amounts to neglecting some information
and hence leads to different, larger residuals. Thus, in comparison to the full regression (5), the
PCAR regression will potentially incur some bias in the estimates which has to be weighed against
the benefits of lower estimator variance.

4.2.3 Combining Model Averaging and Principal Components

Performing model averaging in a PCAR framework is straightforward and the simplest approach
is to always include a certain number of principal components and to average only over the focus
variables. The key question is the determination of the number of principal components to be
included. The more principal components are included, the lower will be the (omitted variable) bias,
but the larger will be the variance and any choice concerning the number of principal components
amount to an implicit positioning on the bias-variance trade-off.

In most empirical applications of PCAR, the choice concerning r, i.e. the number of included
principal components, rests on the eigenvalues λi, where large eigenvalues are attributed to latent
factors and small ones to the noise component. The literature provides many approaches and we
have experimented with several of them.1 A widely-used descriptive approach that is found to
perform well in practice is given by the variance proportion criterion (VPC):

rVPC(α) = min
j=1,...,KC

{
j

∣∣∣∣∣
∑j

i=1 λi∑KC
i=1 λi

≥ 1− α

}
, (9)

with α ∈ [0, 1]. Thus, rVPC(α) is the smallest number of principal components such that a fraction
1 − α of the variance is explained. In the simulations and also the applications, setting α = 0.2,
i.e. explaining 80% of the variance, leads to reasonable numbers of included principal components.

Model averaging conditional on a fixed number rVPC(α) of principal components is a simple device
to tackle (omitted variables) bias of the estimators for the coefficients corresponding to the focus
variables whilst keeping the estimator variance low due to the inclusion of only a comparably small
number of mutually orthogonal principal components. The number of principal components reflects
the ‘structure’ of the control variables, but the approach described so far has the disadvantage that
the relevance of the principal components for the dependent variable is not taken into account
in the procedure. This limitation is overcome by performing model averaging not only over the
focus variables but over both focus variables and principal components computed from the control
variables.

1In addition to the results reported in the paper the numvariables ber of principal components has also been
determined using the testing approaches of Lawley and Maxwell (1963), Malinowski (1989), Faber and Kowalski
(1997), Schott (2006) and Kritchman and Nadler (2008). In a variety of simulations, however, the VPC criterion and
a simple eigenvalue test based on the correlation matrix have performed best. Using the VPC criterion can also be
interpreted as a regularization device for linear regression when the data are in fact not generated by a factor model,
whereas the mentioned tests have been derived explicitly for factor models.
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4.3 Model averaging over the number of included PCs - A variable
group prior

Any choice of the number of included principal components (PCs) r has to a certain extent a
heuristic character and has to trade off good approximation (necessary to capture the information
contained in all explanatory variables to have small bias) with a sufficiently small number of prin-
cipal components (necessary for well-behaved regression analysis with low variance). In a model
averaging (MA) framework, such uncertainty may be obviously addressed by averaging over mod-
els with varying r - i.e., estimating every possible combination of PC-augmented model, for each
possible number of included principal components. Keeping up with the logic of PCAR, any combi-
nation of focus variables could be conditioned on r PCs with r ranging from 0 to rmax ≤ KC .1 This
exploitation of the inherent hierarchical ordering of PCs induced by the eigenvalues still presents a
computational advantage vs outright model averaging: Applying model averaging over focus vari-
ables as well as the number of PCs implies a model space of 2KF × (KC + 1) potential models Mj

– a space that is considerably smaller than under outright model averaging over both focus and
control sets with 2KF+KC potential models. As long as there is positive prior mass on each of these
models, the posterior estimate of r would approach the ’true’ number of latent factors.2

4.3.1 Motivation

While such a principal components-model averaging (PC-MA) approach is expected to be more
robust than outright model averaging in short samples, both methods should of course asymptoti-
cally converge to the same estimates with increasing number of observations. Note, however, that
in finite samples, estimates depend on priors – and applications of PC-MA and MA on the same
data are only equivalent if the model prior structure is taken into account. Consider, for instance,
a model averaging case with one focus and 9 control variables. Under the ’uniform’ mode prior
(constant prior over all models), the prior model probability of the null model would be 2−10, and
the prior inclusion probability for inclusion of at least one control variable would be 1− 2−9. Ap-
plying PC-MA to the control variables in this case reduces the model space from 210 to 2 ∗ (9 + 1).
Imposing a uniform model prior on the PC-MA structure would consequently imply a prior model
probability for the null model of 1

2∗10 , and the prior inclusion probability for the control variables
would decrease to 1 − 2

2∗10 . I.e., PC-MA under a uniform model prior would weaken the prior
odds of finding the control variables important, compared to outright model averaging (under the
same prior). This issue worsens if the number of considered PCs is smaller then the number of
original control variables (for instance, if the number of control variables is larger than the number
of observations). In order to avoid such unwanted concentration of prior odds in focus variables, an
adjustment of the model prior structure is necessary if the objective is to stay close to the (usually
neutral) prior mass distribution from outright model averaging.

Keeping up the prior equivalence with outright model averaging also calls for interior discrimination
among models with varying numbers of principal components: Note that eigenvalues represent the
degree of overall control group variance embodied in their corresponding principal components.
In the previous example with 9 control variables, a uniform model prior implies a prior expected
number of 4.5 included control variables (conforming to each control variable’s prior inclusion

1The maximum number of included PCs rmax could be smaller than the number of control variables KC on which
the PCs are based. For robustness reasons and computational simplicity, rmax might be chosen according to some
suitable cut-off criterion.

2Note that ’asymptotic’ here refers to increasing sample size while keeping the number of controls and focus
variables constant.
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probability of 1
2). Under PC-MA with a uniform prior, the prior expected number of included PCs

would equally be 4.5. However, one objective in extracting principal components is to improve
robustness by dimensional reduction. In applying such a transformation, a typical research set-up
would expect the number of included principal components under PC-MA to be (weakly) less than
the prior expected number of included control variables under outright model averaging. Indeed,
when considering that the eigenvalue of each principal component represents overall control set
variance in terms of number of variables,1 then such a uniform prior on PCs would imply a prior

included number of ’represented’ control variables equal to
∑9
i=1(10−i)×λi

2×10 ≥ 4.5.2 In view of prior
equivalence with MA, but also the inherent motivation of cut-off criteria like VPC, it should thus be
more appropriate to adjust the prior number of ’represented’ control variables to their appropriate
scaling under MA. For instance, if all 9 control variables in this example were collinear, then the
first PC would represent all control set variance, and including further PCs would be pointless.
If, in contrast, the control variables were orthogonal, then each PC would be (up to sign changes)
equal to the original untransformed control variables. In such a case, all 9 PCs should be considered
equally (under the hierarchical approach described above, this would amount to just considering
models that include all nine – or no – PCs) . Note that in these two cases, the prior included
number of PCs would differ, but the prior included number of ’represented’ control variables would
be 4.5 in both.

If the aim is to establish a prior weight of models that conforms to outright model averaging then
such a prior should keep constant the prior importance attached to focus variable and the null
model, and adjust the set of prior weights on control PCs such that the prior on ’represented’
control variables remains unchanged. The following paragraphs develop a more general prior that
conforms to such considerations.

4.3.2 A PC-MA group prior

While so far the discussion has focused on extracting PCs from a single set of control variables,
this could be generalized to regularizing distinct variable groups: For instance, in order to gauge
the effect of institutional settings on economic growth (e.g., Kraay and Tawara, 2010), institutional
proxies could be grouped into separate buckets according to their nature, and transformed into
principal components to assess the impact of the respective concept. (Such a setting incorporates
the notion of untransformed focus variables vs. a PC-transformed control group, since each focus
variable can be considered as a singleton variable group.) In view of the implications on prior model
mass above, such a setting should be able to mimic the prior mass distribution among groups that
obtains under outright model averaging. The following paragraphs lay out a model prior framework
that achieves just that.

Suppose the set of explanatory covariates X can be divided into L distinct variable groups, each
comprising KC,l variables for l ∈ {1, . . . , L}. For expositional simplicity, let the MA model prior
framework be the Sala-i-Martin et al. (2004) binomial model prior p(kγ) = θkγ (1 − θ)kγ , where
kγ is the number of included variables in model Mγ , and θ denotes a predefined constant prior
inclusion probability for each variable. (Note that the uniform model prior is sub-case hereof,
with θ = 1

2 .) Under a transformation of the L variable groups into the PC-MA framework, the
model prior should satisfy the following requirements: (a) For each transformed variable group l,
a transformation should not affect the prior model probabilities of all other groups and the null

1Remember that here, we exclusively consider principal components computed from correlation matrices, thus
the sum of their corresponding eigenvalues is restricted to the number of variables that are regularized.

2Here, λi represent the i− th eigenvalue of the correlation matrix of XC , ordered by the size of eigenvalues.
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model. (b) Additionally, the posterior inclusion probability of each individual PC from group l PCl,i
should be proportional to its corresponding eigenvalue λi,l (both requirements might be relaxed,
see below).1

The following prior satisfies both requirements. . . 2

p(Mγ) =
∏
l∈Mγ

Θlf(Mγ , l)
∏
l /∈Mγ

(1−Θl) (10)

with f(Mγ , l) ≡
λαlkC,l,l − λ

αl
kC,l+1,l

λαl1,l

where kC,l = arg min
j
λj,l ∈Mγ

. . . under the following parameter choices:

(A) Θl = 1− (1− θ)KC,l ∀ l
(B) αl = 1 ∀ l

This prior set-up keeps the prior model probabilities of all singleton variable groups (i.e., focus
variables) and the null model unchanged with respect to outright model averaging. Moreover, the
prior inclusion probability for variable group l (which corresponds to the prior inclusion probability
of PC1,l) is equal to the prior probability of inclusion of at least one group variable under the MA
set-up Θl.

3

Under the lead example used in this paper, with KF focus variables and KC control variables,
the application of this prior boils down treating each focus variable as a singleton control set.
If parameter choices (A) & (B) hold, the ΘF = θ for each focus variable, yielding the following
representation of the prior (here, kF denotes the number of focus variables included in Mγ):

p(Mγ) =

{
(1− θ)KC+KF−kF θkF if Mγ includes no PC

(1− (1− θ)KC )θkF (1− θ)KF−kF f(Mγ , 1) if Mγ includes PCs

Straightforward algebra reveals the prior model size under PC-MA (the prior expected number of
included focus variables and principal components) as follows:

E(k) =
L∑
l=1

Θl

∑r
i=1 λ

αl
i,l

λ1,l
(11)

Under the example with KF focus variables and one control set with KC variables, the parameter
choices (A) and (B) imply a prior model size as follows:4

E(k) = E(kF ) + Θ1
KC

λ1

The two parameters Θl and αl allow to fine-tune the prior importance of variable groups,with Θl

steering the importance between variable groups and αi within principal components. The smaller

1Since for each control variable group, only rl ≤ KC,l eigenvalues can be considered, define λr+1,l ≡ 0 for ease of
notation.

2Here, l ∈Mγ denotes models that include at least one principal component out of control set l.
3Note that condition (a) implies that the prior probability for at least one variable of group l to be included

should remain the same under both the MA and the PC-MA representation.
4Here, E(kF ) denotes the prior expected number of included focus variables E(kF ) = θKF
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the parameter Θl, the less prior importance is attached to group l. Setting Θl = 1, in contrast,
forces each model to include at least one principal component of group l. The parameter thus allows
to adjust for biased prior probabilities due to group effects, e.g. if two ’equally important’ variable
groups comprise a different number of individual proxies. The parameter αl is bijectively related
to the prior expected number of included PCs, conditional on inclusion of at least one PC out of
group l. While αl = 1 sets the prior inclusion probability of each PC proportional to its eigenvalue,
α > 1 skews prior mass versus the first-most PCs. With αl →∞, the prior set-up concentrates on
the first PC of group l, while prior mass on the other PCs will vanish. In contrast, αl = 0 favors
models with all PCs (of group l), while models with fewer PCs obtain zero prior importance. For
practical matters, one might elicit the parameter αi via specifying the prior expected number of
included PCs (of group l, conditional on prior model probabilities of models that include group
l).1 All in all, however, only the parameter choices (A) and (B) allow for equivalence with a prior
set-up under outright model averaging. For this reason, we will retain these parameter choices
throughout the paper, except where otherwise indicated.2 Finally, note that the PC-MA prior
presented here is built on the binomial Sala-i-Martin et al. (2004) prior for expositional simplicity.
It is straightforward to extend this prior in order to achieve equivalence under the MA set-up with
other model priors such as in Ley and Steel (2009) (see appendix).

4.4 An Illustrating Simulation

By means of a simulation exercise, we compare the properties of the various PC-MA approaches
versus OLS, PCAR and ’standard’ BMA, as well as the ’weighted average least squares’ (WALS)
approach by Magnus et al. (2010). There is, of course, an ad-hoc character about any such exercise
– therefore we strive for a set-up that is similar to typical cases from empirical model averaging.
As discussed in the introduction, we consider in particular applications where a handful of newly
proposed ’alternative’ indicators (the focus variables) are evaluated against a large set of established
predictors (the controls). (Consider, for instance, the new financial early warning indicators for
the business cycle that have been proposed in the wake of the recent financial crisis (e.g., Alessi
and Detken, 2011).) Moreover we regard as ’typical’ a data set with about a 100 observations and
nearly as many potential explanatory variables. The datasets we have in mind are characterized
by a rich correlation structure, as well as by non-negligible correlation between focus and control
variables. The simulation set-up below formalizes these notions. In order to evaluate the estimation
approaches with respect to our two main motivations (robustness of estimates and estimators), we
resort to a variant of ’perturbation instability in estimation’ by Yuan and Yang (2005): As a proxy
for the robustness of estimates, we consider the root mean squared deviations of fitted values from
the ’true’ simulated values for the dependent variable (note that this corresponds to the notion of
out-of-sample prediction errors). For examining the robustness of coefficient estimators, we likewise
look at the root mean squared deviation of estimated coefficients for the focus variables from the
’true’ coefficients imposed in the simulation set-up.

1Although there is a bijection between αl and the prior number of included PCs (given Θl), no general closed-form
exists to specify αl this way (see appendix).

2We have experimented with a wider array of prior parameter settings than reported in the following sections.
However, results under such priors stay close to the default setting (A) and (B), and do not change at all the
qualitative findings discussed below.
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4.4.1 The simulation set-up

We structure our simulation as follows: Set sample size at N = 100, which is of the order of
magnitude encountered in empirical observations.1 Consider 10 focus variables2 and 67 ’established’
control variables. In order to emulate empirical settings, we bootstrap the control variables using
the correlation matrix ΣSDM among the 67 covariates in the Sala-i-Martin et al. (2004) dataset. The
correlation structure in ΣSDM can be considered quite diverse: While its first principal component
(PC) explains 25% of the variance in the (standardized) data set, it takes the first four PCs to
account for 50% of its variance, and 23 PCs for 90%. Nonetheless, this correlation matrix was
computed on very few observations (88) and consequently displays many very small eigenvalues
(i.e., unimportant PCs). This near-collinearity is also expressed by the reciprocal condition number
of ΣSDM , which is 9.38× 1020.

XC = Std
(
Z̃C Chol(ΣSDM )

)
Here, Z̃C denotes a N × 67 vector of IID normally distributed random elements, and Chol denotes
the Cholesky decomposition operator. Moreover, let Std be an operator that normalizes the columns
of XC to zero mean and unit variance. The focus variables display a certain correlation among
themselves, as well as with the control variables. In order to ensure the positive-definiteness of the
result variance-covariance matrix over both controls and focus variables, we opted for the following
approach:

XF = Std

(
Z̃FChol((1− ρF )I10 + ρF11′) + θCFXCPCΛ

− 1
2

C (I10 0)′
)

Here Z̃F denotes an N × 10 matrix with normally IID elements, and ρF is a parameter to in-
duce correlation among the independently distributed components of XF . PC and ΛC denote the

eigenvector and eigenvector matrix of XC , respectively – the expression XCPCΛ
− 1

2
C (I100)′ therefore

denotes the 10 most important principal components of XC . The parameter θCF induces a rich
correlation structure among XC and XF , and is closely related to the RV coefficient, a measure
of similarity between two data sets.3 Instead of applying θCF to the principal components of XC ,
we considered several alternative specifications which yielded very similar outcomes at a cost of a
more clustered covariance matrix between XF and XC . Note that in the simulation exercise, we
specify the parameter θCF to account for the total amount variance induced by this structure.

In order to define the response variable, we first specify the model for the ’true’ outcome, i.e.
without residuals: For a generalized representation of the controls, let the coefficient vector for
the control variables b̃C ∼ U(0, 4) be based on a uniform distribution bounded by zero and four.
This resulting summand XC b̃C is pre-multiplied by the scalar θC in order to define the relative
importance of control vs. focus variables. Include two focus variables in the ’true’ model; Since the
focus variables generated for XF are interchangeable, restrict the coefficient vector βF such that

1For instance, the data set by Sala-i-Martin et al. (2004) has 88 observations for 67 regressors, the application by
Fernández et al. (2001a) uses 72 observations for 41 covariates, while the model averaging application of Giannone
et al. (2010) uses 27 covariates with only 42 observations.

2We chose this number as it allows for computationally easy enumeration of all potential models.
3The RV coefficient is a multivariate generalization of the R-squared, and is defined as
Tr(E(x′F xC)E(x′CxF ))√

Tr(E(x′
C
xC)2)

√
Tr(E(x′

F
xF )2)

, where E(x′AxB) denotes the covariance matrix between XA and XB .
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its third to tenth element are zero, while the first two elements are specified as 1
2 .1

ytrue =
1

σtrue

(
XFβF + θCStd

(
XC b̃C

))
(12)

Here, we divide the result in parentheses by its expected standard deviation σtrue in order to
render the variance of ytrue close to one. The ’true’ coefficients for the first two focus variables are
therefore each 1

2σtrue
.2 The ’observed’ response variable is finally generated by y = ytrue + ε, where

ε ∼ N(0, σ2IN ). In the vein of Yuan and Yang (2005), the analysis of simulation results will mostly
concentrate on the impact of changes to the variance parameter σ. Note that in this set-up, any
decrease of σ has the same impact as an increase of sample size N at constant variance.

4.4.2 Estimation approaches and robustness evaluation

We consider nine estimation approaches for evaluation in the simulation exercise: ’Full OLS’ uses all
77 simulated variables (plus an intercept) in ordinary least squares. ’PCAR’ applies PC-augmented
regression on the focus variables and a number of principal components as implied by a pre-set
Variance Proportion Criterion (VPC) of 80% (which is close to the VPC used in comparable
applications). ’Standard FMA’ applies Frequentist model averaging indiscriminately over focus
and control variables.3 For all cases representing FMA, we apply the S-BIC variant (Claeskens and
Hjort, 2008) as discussed in the previous section (for ’standard FMA’, these are combined with
with uniform model priors). Among the competing methods, we also consider two variants of the
weighted-average least squares (WALS) estimator proposed by Magnus et al. (2010), which follows
an approach that is directed at the same problem as ours, but follows the opposite approach. The
set-up ’WALS w.aux.’ is close to the example used by the authors, in that their equivalent of
principal-component model averaging is applied over the 10 focus variables4, after they have been
conditioned on the 67 ’auxiliary’ control variables by means of OLS. Since the large OLS component
in ’WALS w.aux.’ leads us to expect, a priori, that estimation results will be close to OLS, we also
consider another variant of WALS. The model ’WALS no aux.’ applies the conceptual equivalent
of model averaging indiscriminately over all 77 variables.

We consider four approaches that combine model averaging with principal components according
to the concepts introduced in the previous section: ’PC-MA (fixed, FMA)’ performs Frequentist
model averaging over the focus variables, conditioned on a fixed set of PCs (as given by the VPC
of 80%).5 The approach ’PC-MA (unif., FMA)’ applies S-BIC model averaging over both the focus
variables and the PCs (up to a maximum PC number as implied by the VPC), with a simple uniform
model prior structure. ’PC-MA (prior, FMA)’ differs in that it imposes the PC-adjusted prior on
the principal components that was introduced in Section 4.2. ’PC-MA (prior, BMA)’, in contrast,
represents a purely Bayesian approach under state-of-the-art priors: it introduces model-adaptive
shrinkage via the hyper-g coefficient prior (Feldkircher and Zeugner, 2009; Liang et al., 2008) and

1Note that these coefficients may be fixed to any non-zero value, as the relative importance of XF vs. XC is
entirely controlled for by the parameter θC .

2Inspection of the simulation set-up yields σtrue =
√
θ2
C + 1

4
Var(XFβF ). For the application at hand, Var(XFβF )

is closely bounded between 0.72 and 0.752.
3As it is infeasible to enumerate 277 potential models, ’standard FMA’ resorts to MCMC sampling for an approx-

imation of posterior results. It relies on the MCMC model sampler used by Fernández et al. (2001a), with 50,000
burn-ins and 450,000 subsequent draws for each simulation run. The other estimation strategies in this section are
all estimated by full enumeration of the model space, and thus do not require MCMC sampling.

4Note that Magnus et al. (2010) use a different naming convention: Their ’focus variables’ conceptually correspond
to ’control variables’ in this paper, while their ’auxiliary variables’ are referred to as ’focus variables’ here.

5Note that this set-up conforms to the one proposed by Wagner and Hlouskova (2010).
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combines the adjusted prior with the binomial model prior by Sala-i-Martin et al. (2004) in order
to loosen the prior on expected model parameter size.1

Model Description

full OLS Ordinary least squares over all 77 simulated variables (plus an inter-
cept).

PCAR principal components-augmented regression: least squares over 10 ’fo-
cus’ variables and principal components extracted from the 67 ’con-
trol’ variables. The number of included factors conforms to an 80%
variance proportion criterion (VPC).

Standard FMA Outright Frequentist Model Averaging (FMA) over all 77 variables.
The FMA variant here is S-BIC as in Claeskens and Hjort (2008) (i.e.
using uniform model priors).

WALS w.aux. ’Weighted average least squares’ (WALS) as proposed in Magnus et al.
(2010), with WALS applied over the 10 ’focus’ variables, conditioned
(via least squares) on the 67 controls as ’auxiliary variables’.

WALS no aux. ’Weighted average least squares’ (WALS), applied indiscriminately
over all 77 variables.

PCMA (fixed, FMA) Frequentist model averaging (FMA) as above, applied on the 10 ’fo-
cus’ variables, after having conditioned (via least squares) on a fixed
number of principal components extracted from the set of 67 control
variables (as in section 4.2.3). The number of included control factors
is determined by an 80% VPC.

PCMA (unif., FMA) Frequentist (S-BIC) model averaging over models with the 10 focus
covariates and a variable number of included control principal compo-
nents, with uniform priors over all model combinations (as mentioned
in the motivation of section 4.3).

PCMA (prior, FMA) Similar to ’PCMA (unif., FMA)’, but with the PC-MA model prior
as outlined in section 4.3.2).

PCMA (prior, BMA) Model averaging with the PC-MA prior similar to ’PCMA (prior,
FMA)’, but with individual models estimated via normal-gamma con-
jugate Bayesian regression with adaptive shrinkage (Feldkircher and
Zeugner, 2009).

Table 4.1: Outline of model variants used for simulations

In our main simulation set-up, we look at the robustness of these estimation strategies under
varying degrees of residual variance σ. For any given parameter set (σ, ρF , θCF , θC), we perform 40
bootstrapping runs: Each run of these runs corresponds to a joint draw of the random vectors Z̃F ,
Z̃C and b̃C , as well as the error term ε. In order to assess the quality of the estimation strategies,
we compute two main indicators over the bootstrapping runs:

• Robustness of estimates: The root mean squared deviation of the fitted values from ytrue for
the robustness of estimates. The slope of this indicator with respect to σ corresponds to the
notion of perturbation instability in estimates proposed by Yuan and Yang (2005).2

1For ’BMA adjusted PC’, we tuned the parameters of the beta-binomial model prior such to attain a prior expected
model size of 67/2 when taking the prior structure on the PCs into account. The model prior thus represents a uniform
distribution over prior model size.

2Yuan and Yang (2005) propose to evaluate the robustness of estimates by bootstrapping from a real-world data
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• Coefficient robustness: As a proxy for realized coefficient risk, we compute the root mean
squared deviation of coefficient estimators from their ’true’ values for 1) the focus variables
that are included in the ’true’ model, and 2) the focus variables that were not considered in
constructing ytrue.

4.4.3 Simulation results

Figure 4.1–4.4 present the simulation results for values of σ in the range [0.2, 2.2]. Note that since
ytrue has been modeled to unit expected variance, the parameter is monotonously related to the
expected R-squared (squared correlation coefficient) between ytrue and y. The other parameters
have been chosen as to render some standard statistical measures similar to their behavior among
subsets of the Sala-i-Martin et al. (2004) data set: Setting ρF = 0.3 and θCF = 0.6 yields an
RV-coefficient between XF and XC that conforms to the RV coefficient between random subsets of
10 and the remaining 57 variables out of the data set. The parameter for the relative importance
of XC in determining ytrue was set to θC = 0.2 in order to make the variance of the two summands
in equation (12) comparable.

The robustness of estimates in response to noise increases is displayed in Figure 4.1. As may be
expected, ’Full OLS’ performs well for small levels of noise, but its performance worsens steeply
with increasing levels of σ. In contrast, ’PCAR’ is much more more effective for intermediate to
large levels to noise, a result that is well-established in the literature (e.g., Stock and Watson, 2006).
Interestingly, the pseudo-forecasting results for plain model averaging (’Standard FMA’) are very
close to those of ’PCAR’. Their slight disparity stems mainly from the differing estimators in focus
variables, while the results for the control variables are nearly interchangeable – this finding is not
surprising in view of the conclusions reached by De Mol et al. (2008) in a similar context.1 The
’MA fixed PC’ approach intends to combine the virtues of model averaging and PC factor models,
and it actually dominates both its siblings by a non-negligible degree. Since the ’WALS w.aux.’
approach is characterized by a large OLS component, it does not surprise in hardly outperform
’Full OLS’ in terms of robustness. In contrast, the ’WALS no aux.’ variant performance astonishes
in being considerably worse than the ’PCAR’, ’Standard FMA’ and ’MA fixed PC’ set-ups.

The major improvement in robustness is achieved by the estimation strategies that average over
the number of included principal components. Easing the restriction on the number of PCs seems
the most important driver of their performance. In contrast, the impact of the various priors
seems negligible, which indicates that the data set-up (in particular on the PCs) is strong enough
to dominate any well-behaved prior distribution. The outperformance of model averaging with
varying PCs may well be due to the fact that the (posterior) expected number of included PCs
under these approaches varies between 2 and 5, while the chosen Variance Proportion Criterion
induces a number of PCs in ’MA fixed PC’ that ranges between 12 and 15 (Note, moreover, that this
number is very close to the (posterior) expected number of parameters under ’Standard FMA’).
Overall, these results indicate that in terms of robustness for prediction purposes, it might be
advisable to forgo the separation of focus variables altogether and directly average over principal
components constructed from the unified dataset (XF , XC). Yet a major purpose of PC-MA is
precisely to improve inference about the importance and coefficients of particular focus covariates.

set and computing the mean squared difference between the (simulated) fitted values for an estimation strategy and
the actual OLS fitted values from the initial dataset (divided by the variance σ of the bootstrapping error term).
The authors regard the slope of the such constructed indicator with respect to σ at σ = 0 as proxy for robustness of
an estimation strategy.

1Note, however, that purely Bayesian model averaging along the lines of ’BMA adjusted PC’ (but without a
principal component part) performs considerably better than ’Standard FMA’.
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In this respect, the results on coefficient estimator robustness provide some insight: Figure 4.2
presents the root mean squared deviation between estimated coefficients1 for the two included
focus variables from their ’true’ value 1/2σtrue. The ranking appears broadly similar to the previous
case, with OLS worsening its comparative performance with increasing variance. The two WALS
variants are virtually indistinguishable and do not represent a major robustness improvement over
the remaining methods. Again, the approach ’FMA fixed PC’ performs slightly better than ’PCAR’.
The indicator is virtually indistinguishable for the two frequentist model averaging approaches with
a variable number of PCs (’FMA uniform PC’ and ’FMA adjusted PC’), while their fully Bayesian
sibling performs considerably better under high levels of noise. The most striking result, though,
is the performance of ’Standard FMA’, which exhibits much less deviation of the ’true’ coefficients
from their target. Nonetheless, the outperformance of ’Standard FMA’ must be contrasted with
the corresponding results from the ’wrong’ coefficients in Figure 4.3. Here instead, the PC-MA
results outperform the ’Standard FMA’ coefficient uncertainty by about the same degree as they
underperformed in Figure 4.2. Closer inspection suggests that the differing behavior for ’true’ and
’wrong’ coefficients results from the fact that the number of included controls/principal components
is far less under the PC-MA approaches. We conclude from Figure 4.2 and 4.3 that the advantage of
outright ’standard’ Model Averaging over PC-based models is its superiority in terms of coefficient
uncertainty. However, when model averaging is extended to the number of included PCs, PC-
MA performance is comparable to that of outright model averaging. Besides, note that with
respect to uncertainty over both ’true’ and ’wrong’ coefficients, purely Bayesian PC-MA beats its
Frequentist peers by a non-negligible margin (which can largely attributed to their differences in
prior diffuseness).

Finally, consider the robustness of inference about the importance of focus variables. To that
end, we compare the average posterior inclusion probabilities for the ’true’ focus variables under
the various model averaging approaches.2 Note that in ’Standard FMA’ and all four PC-MA
approaches, the posterior expected number of included focus variables varies between 1 and 3
(except for very small noise). Assessing their absolute PIPs therefore leads to the same findings as
their relative importance with respect to each other (Feldkircher and Zeugner, 2012, for a related
discussion). A first look at Figure 4.4 reveals that all PIPs for the included variables turn out to
be quite low. Nonetheless, Figure 4.4 demonstrates that the PC-MA approaches with a variable
number of PCs identify the ’true’ focus variables far better than ’FMA fixed PC’ and ’Standard
FMA’. Note that, again, purely Bayesian PC-MA with loose priors priors (’BMA adjusted PC’)
performs slightly better than its Frequentist analogues under intermediate noise levels.

In addition to the benchmark simulation setting in this Section, we also considered systematic
variations of the parameters ρF , θCF , and θC under σ = 1. The relative performance between the
seven estimation strategies remains stable over these dimensions, apart from trivial level effects.
In particular, changing the relatedness between focus and control variables (by means of θCF , i.e.
the RV coefficient between XF and XC) maintains the levels of the robustness indicators at the
values observed at point σ = 1 in Figures 4.1-4.4. Above all, the indifference of results to these
other indicators corroborates the findings with respect to robustness to noise (as represented by
σ). Principal component-based model averaging with a variable number of PCs is considerably
more robust to noise than either model averaging or PC factor models alone. While the quality of
PC-MA-based inference about coefficient magnitudes is comparable to outright model averaging,
PC-MA (with averaging over PCs) outperforms the latter in inference about the importance of

1Note that for this purpose, it is appropriate to take the coefficients for the model averaging approaches conditional
on inclusion – i.e., averaged only over models that where the respective coefficient was not restricted to zero.

2Note that in the multi-model case, PIPs and t-statistics of OLS models are not readily comparable. We therefore
omitted results from ’Full OLS’ and ’PCAR’ in Figure 4.4.
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covariates as predictors.

4.5 Financial Indicators as Business Cycle Predictors

With the onset of the global financial crisis in 2007, the importance of financial markets for economic
activity as well as the potential risks emerging from the financial markets for the real economy have
become a central concern for policy makers and academic researchers alike. Prior to the crisis, the
financial sector has been primarily regarded as facilitating for efficient allocation of resources and
risk-sharing across agents and over time, much akin to the logistics sector – but the recent experience
has forcefully shown that imbalances on the financial markets may have substantial detrimental
effects for real economic activity. In the meantime in the literature a variety of studies has been
undertaken trying to quantify the importance of as well as the predictive ability of different financial
indicators for real economic activity. Motivated by this example, we assess whether such financial
indicators have predictive content for real activity in a simple univariate set-up.

Any econometric assessment of such ’financial’ indicators on macroeconomic data faces two chal-
lenges: First, macroeconomic data comes at low frequency, while historical data for such financial
indicators rarely extends beyond the 1990s. Any comprehensive assessment of financial indicator
impact on the business cycle is therefore limited to relatively few observations. This problem is
compounded by the fact that not only GDP data, but even some of the proposed financial indica-
tors (e.g., Adrian and Shin, 2010) are only available at quarterly frequency. The second challenge
is that a meaningful evaluation of the predictive content of such alternative indicators should be
confronted with the large array of ’established’ business cycle predictors. Many studies, particularly
in the VAR literature, confine themselves to a dozen of established variables (which, together with
a dozen financial indicators, would already pose a sizable challenge to the application of simple
estimators in a quarterly rolling forecasting framework). But the recent literature found better
short-term forecasting performance in models that rely on condensing information from more than
100 predictors (Stock and Watson, 2006). Among these methods rank shrinkage estimators (De Mol
et al., 2008), factor-based VARs (Stock and Watson, 2005), or simple dynamic factor models of the
type advocated by (Stock and Watson, 2002).

Consequently, this section seeks to address the question whether alternative financial indicators
prove to be viable predictors against a large set of control variables, given that historical data
availability limits sample size to about 100. The PC-MA framework laid out in this paper lends
itself to that purpose, with a separation into control variables along the lines of Stock and Watson
(2002) and ’financial’ focus variables. The set-up also allows for comparison with other estimation
methods evoked in the previous section. For the sake of briefness, we concentrate on forecasting
GDP over a 4-quarter forecast horizon.

4.5.1 Data and Set-up

In order to assess their predictive content for the real economy, we consider a variety of financial
indicators that have been put forward to capture different aspects and channels through which
the financial sector could exert repercussions on the real economy (see Table 4.2 for an overview).
We concentrate on indicators with continuous historical data from the 1980s – which considerably
reduces the consideration set. Adrian and Shin (2010) include as one of their explanatory variables
the growth rate of shadow banking assets, with the shadow banking system comprising ABS issuers,
finance companies and funding corporations (SHADBNK A). The authors argue and demonstrate
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that the assets of the shadow banking system are an important and informative determinant of
funding conditions in the economy.1 In the same vein, the authors also consider the growth rate
of assets in securities brokers-dealers (SBD A), the set of primary US government bond brokers,
as a proxy for leverage in important financial markets intermediaries. The risk-taking channel is
in the focus of Altunbas et al. (2010) with the argument being that monetary policy since the
1990s has caused an increase in banks’ risk taking due to exceptionally low interest rates. We
assess this channel with three variables, namely the delinquency rate on loans secured by real
estate (DRSREACBS), the charge-off rate on business loans (STFBQCB), and the rate of non-
performing commercial loans (NPCMCM). Real assets, in particular house prices, have regained
attention as a predictor financial crises (e.g. Barrell et al., 2010). The house price measure we use
is the Standard & Poor’s Case-Shiller 10 city home price index (SPCS10RSA). Credit indicators
have repeatedly been focused on over decades (e.g., Bernanke, 1993; Bean et al., 2002). While these
have been elaborately discussed, we will examine whether simple credit growth indicators deliver
predictive content. We focus on two indicators for the US economy that have been repeatedly
used for that purpose (e.g., Korobilis, 2009), namely growth in business loans (BUSLOANS) and
growth in bank borrowing from the Federal Reserve (BORROW). Gilchrist and Zakrajsek (2010)
concentrate on the impact of credit spreads and in particular the so-called excess bond premium
on economic activity. This indicators exploit the notion that higher credit spreads reflect decreased
aggregate credit quality and higher general risk aversion. Since Gilchrist and Zakrajsek (2010)
develop their own credit spread index which is not publicly available we use a very simple, but
popular proxy for the credit spread, given by the difference between the 3-month LIBOR and the
3-month treasury bill rate (STED, the ’TED spread’). Clearly, this is only an imperfect measure for
credit spread conditions in the real economy, but tentative evidence suggests that such liquid-market
indicators co-move strongly and indicate conditions in downstream loan markets well as they do not
suffer from survivor bias (as, e.g., in the loan spread). Hatzius et al. (2010) assess the predictive
content of financial condition indexes. Financial conditions are essentially the current state of
financial variables that impact economic behavior and there (future) economic activity. Typical
indexes include variables intended to characterize the supply or demand of financial instruments,
see Hatzius et al. (2010) for a broader conceptual discussion. In our analysis we include the Chicago
Fed adjusted national financial conditions index (ANFCI). Kollmann and Zeugner (2012) contains
a detailed study of the predictive performance (various measures of) leverage, defined as the ratio of
a sector’s assets to its net worth, for real economic activity respectively its volatility. Amongst the
many specifications and combinations investigated in that study, the median of the standardized
Year-on-Year (YoY) changes of the book-value based leverage of the financial sectors property and
life-insurance companies, securities brokers and dealers, commercial banks, households and non-
financial corporate businesses (MEDFoF) performs well. We therefore also consider this specific
leverage variable in our study. In total, we dispose of 11 financial indicators with a reasonable
amount of historical data. Other indicators were also assessed, but they are either very similar to
one of these 11 indicators, or their historical data leaves too few observations to base a quarterly
exercise on. Still, the relatively short history of these 11 indicators puts the earliest date for which
all are available in their proper transformations at 1988Q1.

For the macroeconomic controls, we resort to the quarterly data set used in Stock and Watson
(2011), with 143 macroeconomic indicators. Since their data set ends in 2003, we extend it with
data up to 2011Q3 from the same sources (see Stock and Watson (2011, Table B.1) for the list of
indicators, sources and transformations).2 35 among these variables represents aggregate indicators,
which are linear combinations of their sub-components. Following Stock and Watson (2011), we

1The size (in terms of assets) of the shadow banking systems has been strongly increasing since the mid 1980s to
be of about the same magnitude as the assets of the commercial banks at the eve of the crisis.

2The leading indicators ’index of help-wanted advertising in newspapers’ and ’ratio of help-wanted ads to unem-
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4.5 Financial Indicators as Business Cycle Predictors

omit this aggregate indicators from estimation, respectively principal components decomposition,
which leaves 106 macro-economic indicators (see Stock and Watson, 2011, for the list of included
variables).

ployed’ were discontinued since 2003 (e.g., ) which reduces the data set used here to 141 variables.
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4.5 Financial Indicators as Business Cycle Predictors

4.5.2 Methods

For the sake of briefness, we concentrate on forecasting GDP in this exercise. Since, on the one hand,
some of the evaluated variables are released only a few months after their reference period, while
on the other hand the reduced form factor model approach performs particularly well at shorter-
term horizons, we focus on forecasting GDP growth over four quarters (from time t to t + 4),
conditional on information available at time t. The focus of the exercise is to infer the predictive
content of financial indicators via their statistical ’significance’. To that end, we concentrate on in-
sample results from estimating on the entire sample 1988Q1-2010Q3 for the explanatory variables
(respectively 1989Q1-2011Q3 for the response variable). In order to assess the robustness of the
methods employed, we also conduct a (pseudo-)out-of-sample prediction exercise based on rolling
samples of 40 quarters (which leaves an evaluation sample for the response variable of 2000Q1-
2011Q3).

In view of the simulation results from the previous section, we concentrate the following models to
the data for comparing their empirical results:1

• DFM : A simple dynamic factor model in the style of Geweke (1977) and oriented along Stock
and Watson (2011). It is estimated with OLS, based on the first 5 principal components (at
time t) out of the macroeconomic control data set, plus lagged annual GDP growth (LAGY,
yt − yt−4, and most recent quarterly GDP growth (LAGQ, yt − yt−1).2

• PCAR: Of the PC-augmented regression type, this model adds the 11 financial indicators as
regressors to model ’DFM’.

• BMA: A Bayesian model averaging framework3 over both the financial indicators and the
individual macroeconomic control variables (plus LAGQ and LAGY).4 Since the resulting
model space is too large for enumeration, we resort to MCMC approximation of the model
space.5

• full PC-MA: The PC-MA framework in developed in section 4.3.2, with the macroeconomic
controls as its sole control data set, and the focus variables being the financial indicators
(as well as LAGQ and LAGY). The model prior framework conforms to restrictions (A) and
(B) in section 4.3.2 and thus allows for the null model, with a prior model size of 5 (i.e.
θ = 0.042). For the estimation of individual models , ’full PC-MA’ relies on Normal-Gamma
Bayesian estimation with a hyper-g prior (Feldkircher and Zeugner, 2009).

• PC-MA macro: For comparison with the ’DFM’ model, this framework imitates ’full PC-MA’,
but without the focus variables. I.e., the control data set encompasses all macroeconomic

1We did not consider the WALS estimator by Magnus et al. (2010) in the forecasting exercise, as the computational
framework provided by the authors does not accommodate for a number of variables that is greater than the number
of observations.

2The inclusion of these two ’lag’ indicators results from BIC optimization of model DFM with varying quarterly
and annual lags over the sample 1989Q1-1999Q4.

3We also considered Frequentist model averaging (FMA) of the S-BIC type, but rolling out-of-sample prediction
of this framework were too far off the charts to be included in the figures. This results mainly from MCMC samplers
being caught in local likelihood minima, as S-BIC seems to suffer from a ’supermodel effect’ (Feldkircher and Zeugner,
2009). We do h, however, include FMA results in Table 4.8.

4The model prior used is of the type Ley and Steel (2009), with a prior model size of 5, and the coefficient prior
was set to the hyper-g (UIP) version from Feldkircher and Zeugner (2009).

5Here, we use a simple Metropolis-Hastings algorithm (Fernández et al., 2001a) with 300,000 burn-ins and
3,000,000 subsequent model draws for both the in-sample estimation and rolling samples.
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controls, but the set of ’focus variables is limited to LAGQ and LAGY. The prior set-up
remains as in ’full PC-MA’.

• PC-MA macrofin: This framework differs from ’full PC-MA’ in that it adds the financial
indicators to the control data set rather than the focus variables (i.e., principal components
are computed from 106+11 variables.)1

4.5.3 Results: Performance of models

Tables 4.3 and 4.4 report the coefficients resulting from the simple dynamic factor model ’DFM’
and the variant augmented with financial indicators (model ’PCAR’). Regarding in-sample results,
the adjusted R-squared of ’PCAR’ versus ’DFM’ seems to favor the inclusion of alternative financial
indicators. In particular the variables advocated by Adrian and Shin (2010) (who favor them on
grounds of in-sample regressions) appear to be significant when controlling for macroeconomic
factors, along with the credit growth variables BORROW and BUSLOANS. However, the model
’PCAR’ suffers from two major shortcomings in this respect: First, ’PCAR’ was estimated with
OLS on a short sample of 91 observations, which might lead to over-fitting. Second, the group
of alternative predictors comprises 11 variables – it is thus not surprising that several of them
turn out to be significant.2 The suspicion of shortcomings substantiates when comparing the
root mean squared errors (RMSE) of out-of-sample forecasts from both models. While ’DFM’
performs well with an RMSE of 2.23 (percentage points of growth) over the sample 2000Q1-2011Q3,
’PCAR’ is far worse with 4.89. Even when excluding the period since the Lehman brothers collapse
(2008Q3-2011Q3), root mean squared errors suggest that a model of the kind of PCAR is not fit
for forecasting.

We therefore turn to the model ’full PC-MA’, in order to evaluate the predictive content of the var-
ious financial indicators. Table 4.5 reports the in-sample results over the sample 1989Q1-2011Q3.
The posterior estimate of the number of included principal components3 is 6.06, whereas the pos-
terior estimate of included financial indicators is 3.19. This results contrasts with a weaker prior
expectation of 0.46 included financial indicators and 4.14 principal components. There are, how-
ever, stark contrasts within the two sets of variables: The first four principal components receive a
very high level of posterior support, while higher-order PCs have considerably smaller posterior in-
clusion probabilities (PIPs). Among the financial indicators two variables (BORROW and SBD A)
display very high PIPs, even though they are controlled for the PCs. Strikingly, the bulk of poste-
rior mass is concentrated on a tiny set of models: The three models with highest posterior model
probabilities together account for 29% of posterior mass and all include exactly four principal com-
ponents, as well as the two variables BORROW and SBD A. The question is in how far this effect
stems from the selected sample. Figures 4.8 to 4.11 display the PIPs from the rolling samples used
for (pseudo-)out-of-sample forecasting. The most striking feature is that the PIPs of the financial
indicators seem quite volatile. In particular the PIPs for SBD A (Figure 4.8) and BORROW (Fig-
ure 4.9) surge abruptly in response to the crisis, while they did not seem to matter much among the
samples that include only pre-crisis data. The results from rolling sample estimations thus suggest
that it is only the data from the crisis episode that lets these two variables seem so important.

1For the models ’full PC-MA’, ’PC-MA macro’ and ’PC-MA macrofin’, we impose a maximum number of 23
principal components to average over to keep computational cost low in view of rolling samples (each model space
with 13 ’focus’ variables and 23 PCs requires 196,608 model evaluations). For the evaluation sample 1999Q1-2010Q3,
23 principal components capture 92% of the control set’s variance.

2Of course, the literature proposes several tests for inference about a set of indicators, e.g., White (2000). But
the focus in this paper is on estimation methods, therefore we leave such tests to more detailed empirical research.

3This is equivalent to the sum of posterior inclusion probabilities for principal components.
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Regarding the principal components, Figure 4.11 displays their PIPs over rolling samples. Almost
by definition of the PC-MA frameworks, the first PC remains at a PIP of almost 100% throughout
– the second to fourth PC, in contrast seem to start losing their posterior importance even before
the onset of the crisis. All in all, this feature can be read as the PC-MA framework attributing
less and less posterior mass to macroeconomic controls from mid-2005 on. The results from ’full
PC-MA’ thus suggest that financial predictors have become more important during the latter half
of the 2000s, but it is not clear whether the results on BORROW and SBD A will remain robust
to future developments.

A look at Table 4.8 calls for further caution in this respect: The RMSE of ’full PC-MA’ were some-
what larger than those of the simple ’DFM’ during the first part of the 2000s. But when taking into
account the crisis period, when financial indicators gained in posterior importance at the expense
of macroeconomic factors, the RMSE of the PC-MA framework is far worse than that of ’DFM’.
Figure 4.7 displays the rolling forecasts from model ’full PC-MA’ and offers some insights into this
result: The forecast seems to time the economic slump in late 2008 very well, but then overshoots
throughout 2009-2010 and completely misses the subsequent recovery. Figure 4.8 shows why: For
the rolling samples used for forecasting 2007-2010, the variable DRSREACBS (the mortgage delin-
quency rate) is the most important predictor (apart from the first macroeconomic PC). In it is in
particular the evolution of this variable that is both responsible for the good performance of ’full
PC-MA’ in forecasting the initial crisis period and the vast overshooting thereafter.

The ’full PC-MA’ frameworks thus offers insights on the importance of alternative financial pre-
dictors, but does not seem to be a forecasting framework that attains the performance of a simple
dynamic factor model (at least during the crisis period). Although it allows for controlling through,
and shifting posterior weight to, the factors from the ’DFM’ models, it fails to do so properly and
time. This behavior is mainly due to the large importance attributed to DRSREACBS in response
to its performance in predicting 2007-2008. In order to compare whether the PC-MA framework is
viable at all, consider the performance of the framework ’PC-MA macro’, which does not include
any financial variables. Its in-sample results over 1989Q1-2011Q3 (Table 4.6) seem to support the
inclusion of many more PCs than under ’DFM’. Still, its RMSE performance is comparable to the
’DFM’ model (Table 4.8). Since model ’PC-MA macro’ is based on the same data as ’DFM’, the
only difference is between the two is how they take the data into account. In particular, model
’PC-MA macro’ differs in its time varying shrinkage in terms of posterior inclusion probabilities.
A look at its rolling forecasts (Figure 4.6) shows that they differ only slightly from the ’DFM’
predictions, but apply much more shrinkage during the crisis episode, when its posterior expected
number of included PCs is lower than during the rest of the sample (not displayed). In order to
check whether financial indicators help at least in prediction when they are included in the set of
macroeconomic controls to be regularized, consider the results for model ’PC-MA macrofin.’. Its
out-of-sample RMSE does not differ much from either ’DFM’ or ’PC-MA macro’ (Table 4.8). Its
rolling forecasts, displayed in Figure 4.6, do not appear fundamentally different from the other
models, although they appear to perform marginally better during the crisis period. Finally, its
in-sample results broadly appear similar to that of ’PC-MA macro’ (Table 4.7).

4.5.4 Findings on individual financial indicators

When estimated on the entire sample 1989Q1-2011Q3, PC-MA finds a few financial indicators to be
important predictors of GDP growth. The variables BORROW, SBD A and DRSREACBS enter
with negative coefficients, implying that GDP growth is negatively affected by increases in bank
borrowing from the Fed, broker-dealers asset growth, and increases in the mortgage delinquency
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rate. Figure 4.13 displays the posterior densities for these three variables’ standardized coefficients,
conditional on inclusion.1 All three coefficients seem to be safely in negative territory. However, as
alluded to before, this result might be due to specificities of the sample. Figures 4.8 to 4.10 present
the posterior inclusion probabilities for these indicators. All three mentioned variables display
sizable PIPs only during the latter half of the rolling samples. Thus the posterior importance
attributed to these indicators is mainly due to observations during the crisis period. Figure 4.12
(top panel) sheds more light on the evolution of coefficients: This box plot reports the distribution of
(posterior expected values of) coefficients over the rolling samples. And indeed, while the coefficients
of both SBD A and BORROW are negative, they also remain close to zero for the vast majority of
samples. In contrast, the (unconditional) coefficients for DRSREACBS and ANFCI are found to
remain relatively far from zero for a greater percentage of rolling samples, which implies that they
’matter’ for a large part of these samples. For other financial indicators, this notion of importance
is less pronounced, largely due to their low PIPs. However, even if several indicators seem to
’matter’ less, it is of interest whether they remain consistently above or below zero. The column
’conditional sign certainty’ in Table 4.5 shows that apart from the indicators mentioned above, also
the (in-sample) coefficients of indicators SHADBNK A, MEDFoF, STED, and NPCMCM remain
at one side of the origin for more than 95% of posterior model mass. Figure 4.12 (bottom panel)
broadly confirms this impression, though it casts some doubt on ANFCI.

All in all, it seems that financial indicators could have assisted prediction during the 2000s, but
considering them in the simple way pursued here would not have brought much improvement over
the prediction performance of simple dynamic factor models. Moreover, a broad view of the results
does not suggest that one financial indicator might be particularly adept for prediction purposes.
However, the results do indicate consistent directions for indicators, e.g, a negative impact on
real activity from mortgage delinquency rates, or leverage growth. Estimating PC-MA over the
entire sample 1989Q1-2011Q3 seems to point to SBD A and BORROW as important predictors.
But rolling samples reveal that this result is mainly driven by the crisis period and its aftermath.
In that sense, estimating PC-MA in-sample seems to have fallen prone to the same issue as the
results reported in Adrian and Shin (2010). However, PC-MA clearly fares better in prediction
than outright model averaging on the same data set, which seems to indicate that focus variable
coefficients under ’full PC-MA’ seem to suffer less from (omitted variable) bias under ’BMA’ or
’PCAR’.

4.6 Conclusions

By means of a simulation analysis that is styled after typical model averaging (MA) applications, we
find that popular MA techniques yield coefficient estimators that outperform principal-augmented
regression in terms of robustness. In contrast, model averaging can be susceptible to robustness
problems with respect to estimates and inference about the importance of variables. In response,
we propose a framework that apply model averaging over ’focus’ variables of interest and PC-based
models. A fairly general simulation setting shows that our approach outperforms typical MA and
factor-based techniques in terms of estimate robustness and inference. In particular, we demonstrate
that a computationally cheap framework that applies model averaging over the number of included
principal components can offer considerable robustness improvements. In addition, we propose a
prior framework on the principal components that steers the prior concentration of variance in the
controls and thus can improve convergence in large datasets. Note that this prior framework can be

1The posterior expected value of coefficients conditional on inclusion is equal to their unconditional coefficients
(as provided in Table 4.5) divided by their posterior inclusion probabilities.
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4.6 Conclusions

straightforwardly extended to a MA-based evaluation of competing predictor groups (as is typically
the case in the context of growth regressions).

The proposed ’PC-MA’ framework is particularly appropriate when evaluating competing alter-
native predictors conditional on a large set of established potential controls. For instance, an
evaluation of recently proposed financial early warning indicators for the business cycle should be
controlled for by established predictors. An empirical assessment of several such financial indicators
finds evidence for a consistent relation between a handful of indicators and future real activity, but
shows that they add little predictive content in comparison with the popular Stock and Watson
(2002) dataset.
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4.A Figures

Figure 4.1: Robustness of estimates: Mean squared deviation of fitted values from the ’true’ response
variable according to the simulation set-up. Results are based on the simulations described in Section
4.4, with 50 simulation runs for each value of σ (as indicated on the abscissa).
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4.A Figures

Figure 4.2: Coefficient uncertainty for ’true’ variables: For focus variables that were included in the
’true’ model, the Figure displays the mean squared deviation of coefficients from their values specified
in the ’true’ model. Results are based on the simulations described in Section 4.4, with 50 simulation
runs for each value of σ (as indicated on the abscissa).

Figure 4.3: Coefficient uncertainty for ’wrong’ variables: The Figure displays the mean squared
deviation of coefficients for focus variables that were not included in the ’true’ model. Results are based
on the simulations described in Section 4.4, with 50 simulation runs for each value of σ (as indicated on
the abscissa).
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Figure 4.4: Mean posterior inclusion probability of ’true’ coefficients: results are based on the sim-
ulations described in Section 4.4, with 50 simulation runs for each value of σ (as indicated on the
abscissa).
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Figure 4.5: Time series plots of alternative financial indicators, in standardized (z-scores) form after
transformation according to Table 4.2.
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Figure 4.6: Pure factor model forecasts: Four quarter-ahead forecasts of annual GDP growth, (pseudo-
) out of sample, based on rolling estimation samples of 40 quarters. ’Actual’ denotes realized GDP
growth. ’DFM’ displays its forecasts based on a Stock-Watson-type dynamic factor model with 5
principal components, and GDP growth lags (annual and quarterly). ’PC-MA macro’ denotes a PC-
MA model (Bayesian estimation as in Table 4.6) that is based on the macroeconomic control variables
that underlie the DFM. ’PC-MA macrofin.’ is a similar to ’PC-MA macro’, but with the control data
set (on which principal components are based) extended with alternative financial indicators (Table 4.2)

Figure 4.7: Alternative financial indicators forecasts: Four quarter-ahead forecasts of annual GDP
growth, (pseudo-) out of sample, based on rolling estimation samples of 40 quarters. ’Actual’ denotes
realized GDP growth. ’PCAR’ displays its forecasts based on a Stock-Watson-type dynamic factor
model with 5 principal components and GDP growth lags (annual and quarterly) that includes the fi-
nancial indicators as additional regressors. ’BMA’ denotes Bayesian model averaging over both financial
indicators and individual variables. ’Full PC-MA’ is the model from Table 4.5.
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4.A Figures

Figure 4.8: Rolling posterior inclusion probabilities (PIPs) of financial indicators (1): PIP of four
financial indicators over rolling evaluation of the ’full PCMA’ framework. Dates on the abscissa denote
the end-point of each 40-quarter rolling sample used for estimating the PIPs.

Figure 4.9: Rolling posterior inclusion probabilities (PIPs) of financial indicators (2): PIP of four
financial indicators over rolling evaluation of the ’full PCMA’ framework. Dates on the abscissa denote
the end-point of each 40-quarter rolling sample used for estimating the PIPs.
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Figure 4.10: Rolling posterior inclusion probabilities (PIPs) of financial indicators (3): PIP of three
financial indicators over rolling evaluation of the ’full PCMA’ framework. Dates on the abscissa denote
the end-point of each 40-quarter rolling sample used for estimating the PIPs.

Figure 4.11: Rolling posterior inclusion probabilities (PIPs) of macroeconomic principal components
from rolling evaluation of the ’full PCMA’ framework. Dates on the abscissa denote the end-point of
each 40-quarter rolling sample used for estimating the PIPs.
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4.A Figures

Figure 4.12: Rolling coefficients of financial indicators: Upper panel shows unconditional coefficients
(averaged over all models), while lower panel shows coefficients conditional on inclusion (averaged over
models where this coefficient is not restricted to zero). Both panels show posterior expected values of
standardized coefficients of financial indicators over rolling evaluation of the ’full PCMA’ framework
(target variable evaluation sample: 2000Q1-2011Q3, rolling window: 40 quarters). Central bar in
boxplot corresponds to median coefficient over entire sample, the box bounds to the 25th and 75th
percentile, while whiskers display minimum and maximum coefficient over the entire sample.
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Figure 4.13: Posterior density of coefficients four financial indicators from ’full PC-MA’, in-sample:
Mean (conditional) posterior standardized coefficients of financial indicators from in-sample estimation
of the ’full PCMA’ framework over sample 1989Q1-2011Q3. Solid red line corresponds to the posterior
expected value of standardized coefficients, conditional on inclusion of the variable. Dotted bounds
correspond to two times the posterior expected value plus/minus two times the posterior standard
deviation of the standardized coefficient density.
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Table 4.3: Dynamic factor model, in-sample results (’DFM’)

Std.Coef. t-statistic p-value

(Intercept) 0.03 5.16 0.00
LAGY 0.25 1.13 0.26
LAGQ -0.46 -2.37 0.02
Control PC1 -0.55 -2.95 0.00
Control PC2 0.27 2.11 0.04
Control PC3 0.27 2.58 0.01
Control PC4 0.56 5.66 0.00
Control PC5 0.11 1.28 0.20

Adj. R2-squared 0.38

Notes: Estimates from a dynamic factor model on sample
1989Q1-2011Q3, estimating GDP growth for four quarters
ahead (in-sample) via OLS. Principal components are de-
noted as ’Control PC’, with a number conforming to their
rank as principal components of a macroeconomic control
data set. Variables ’LAGY’ corresponds to lagged annual
GDP growth, while ’LAGQ’ is most recent quarterly GDP
growth. Column ’Std.Coef’ denotes standardized coeffi-
cients, and ’p-value’ the prob-value of the respective (ordi-
nary) t-statistic.
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Table 4.4: Dynamic factor model with alternative financial indicators, in-sample results (’PCAR’)

Std.Coef. t-statistic p-value

(Intercept) 0.05 6.61 0.00
LAGY -0.38 -1.84 0.07
LAGQ -0.28 -1.88 0.06
DRSREACBS -0.24 -1.53 0.13
NPCMCM -0.12 -1.08 0.28
SBD A -0.29 -3.08 0.00
STFBQCB -0.07 -0.67 0.50
BORROW -0.38 -3.32 0.00
BUSLOANS -0.52 -2.44 0.02
SPCS10RSA -0.06 -0.51 0.61
ANFCI 0.31 2.85 0.01
STED -0.12 -0.75 0.45
MEDFoF -0.09 -1.04 0.30
SHADBNK A 0.44 3.04 0.00
Control PC1 -0.65 -3.74 0.00
Control PC2 -0.06 -0.49 0.62
Control PC3 0.01 0.06 0.95
Control PC4 0.36 3.50 0.00
Control PC5 0.06 0.71 0.48

Adj. R2-squared 0.68

Notes: Estimates from a dynamic factor model aug-
mented with additional financial regressors, estimating
GDP growth for four quarters ahead (in-sample) via OLS
on sample 1989Q1-2011Q3. Principal components are de-
noted as ’Control PC’, with a number conforming to their
rank as principal components of a macroeconomic control
data set. Variables ’LAGY’ corresponds to lagged annual
GDP growth, while ’LAGQ’ is most recent quarterly GDP
growth. The remaining variables are financial indicators
(cf. Table 4.2 for an overview). Column ’Std.Coef’ denotes
standardized coefficients, and ’p-value’ the prob-value of
the respective (ordinary) t-statistic.
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Table 4.5: PC-MA with alternative financial indicators, in-sample results (’full PC-MA’)

Variable Post.Incl.Prob. Coef (Post.exp.val.) Coef. St.Dev. Cond.Sign Certainty (+)

Control PC1 1.00 -0.25 0.16 0.00
BORROW 0.98 -0.44 0.14 0.00
SBD A 0.88 -0.32 0.15 0.00
Control PC2 0.87 0.05 0.10 0.81
Control PC3 0.86 0.10 0.10 0.97
Control PC4 0.85 0.26 0.14 1.00
DRSREACBS 0.59 -0.22 0.20 0.00
Control PC5 0.35 0.03 0.07 1.00
SHADBNK A 0.27 0.07 0.14 1.00
Control PC6 0.21 0.02 0.05 0.99
LAGQ 0.19 -0.06 0.14 0.01
Control PC7 0.17 -0.02 0.05 0.00
Control PC8 0.14 0.00 0.03 0.76
Control PC9 0.14 0.00 0.02 0.82
Control PC10 0.14 0.00 0.03 0.85
Control PC11 0.14 -0.01 0.03 0.08
Control PC12 0.14 0.03 0.08 1.00
MEDFoF 0.14 -0.03 0.07 0.00
Control PC13 0.13 -0.00 0.02 0.09
Control PC14 0.13 -0.00 0.02 0.00
Control PC15 0.13 0.01 0.03 1.00
Control PC16 0.13 0.03 0.07 1.00
Control PC17 0.13 -0.02 0.07 0.00
ANFCI 0.10 0.02 0.07 0.98
STED 0.08 -0.02 0.07 0.01
Control PC18 0.08 -0.00 0.02 0.01
LAGY 0.07 -0.02 0.09 0.01
Control PC19 0.07 -0.00 0.02 0.00
Control PC20 0.07 0.00 0.02 1.00
Control PC21 0.07 0.01 0.03 1.00
Control PC22 0.06 -0.00 0.01 0.13
Control PC23 0.06 -0.01 0.04 0.00
SPCS10RSA 0.04 0.00 0.04 0.79
BUSLOANS 0.04 -0.01 0.05 0.30
STFBQCB 0.04 -0.00 0.03 0.26
NPCMCM 0.03 -0.00 0.02 0.04

Notes: Posterior estimates from PC-MA on sample 1989Q1-2011Q3, estimating GDP growth for
four quarters ahead (in-sample), based on macroeconomic control indicators, lags and alternative
financial indicators. Fully Bayesian estimation was used, with a PCMA-group prior (see Section
3) as model prior, and the hyper-g prior framework (Feldkircher and Zeugner, 2009) as coefficient
prior. Variables are divided into ’Control PC’, i.e. ranked principal components based on a control
data set. Variables ’LAGY’ corresponds to lagged annual GDP growth, while ’LAGQ’ is most
recent quarterly GDP growth. The remaining variables are financial indicators (cf. Table 4.2 for an
overview). ’Post.Incl.Prob.’ denotes the posterior inclusion probability (PIP) per variable. ’Coef
(Post.exp.val)’ details the posterior expected value (’estimate’) for standardized coefficients. Note
that these coefficients are ’unconditional’, i.e. averaged over models that include and do not include
the variable.1 ’Coef. St.Dev.’ displays the unconditional posterior standard deviation of these
coefficients. ’Cond.Sign Certainty (+)’ denotes the share of models where the coefficient was found
to be positive, conditional on inclusion (i.e., sign certainty for a negative coefficient corresponds to
one minus this indicator).
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Table 4.6: PC-MA with just macroeconomic control factors, in-sample results (’PC-MA macro’)

Variable Post.Incl.Prob. Coef (Post.exp.val.) Coef. St.Dev. Cond.Sign Certainty (+)

Control PC1 1.00 -0.51 0.20 0.00
Control PC2 1.00 0.09 0.10 0.80
Control PC3 1.00 0.14 0.08 1.00
Control PC4 1.00 0.42 0.09 1.00
Control PC5 0.97 0.10 0.07 1.00
Control PC6 0.96 0.17 0.08 1.00
Control PC7 0.92 -0.06 0.08 0.01
Control PC8 0.91 0.07 0.08 1.00
Control PC9 0.91 0.01 0.06 1.00
Control PC10 0.91 0.00 0.07 0.37
Control PC11 0.91 -0.02 0.06 0.11
Control PC12 0.91 0.22 0.10 1.00
Control PC13 0.87 -0.01 0.06 0.35
Control PC14 0.87 -0.02 0.06 0.00
Control PC15 0.87 0.04 0.06 1.00
Control PC16 0.87 0.16 0.09 1.00
Control PC17 0.86 -0.17 0.09 0.00
Control PC18 0.56 -0.03 0.05 0.00
Control PC19 0.49 -0.03 0.05 0.00
Control PC20 0.44 0.01 0.05 1.00
Control PC21 0.42 0.05 0.08 1.00
LAGQ 0.39 -0.14 0.22 0.00
Control PC22 0.34 0.00 0.04 0.60
Control PC23 0.32 -0.02 0.05 0.00
LAGY 0.27 -0.08 0.17 0.04

Notes: Posterior estimates from PC-MA on sample 1989Q1-2011Q3, estimating GDP growth for
four quarters ahead (in-sample), based on macroeconomic control indicators and lags (framework
’PC-MA macro’). Fully Bayesian estimation was used, with a PCMA-group prior (see Section 3)
as model prior, and the hyper-g prior framework (Feldkircher and Zeugner, 2009) as coefficient
prior. Variables are divided into ’Control PC’, i.e. ranked principal components based on a control
data set. Variables ’LAGY’ corresponds to lagged annual GDP growth, while ’LAGQ’ is most
recent quarterly GDP growth. ’Post.Incl.Prob.’ denotes the posterior inclusion probability (PIP)
per variable. ’Coef (Post.exp.val)’ details the posterior expected value (’estimate’) for standardized
coefficients. Note that these coefficients are ’unconditional’, i.e. averaged over models that include
and do not include the variable.1 ’Coef. St.Dev.’ displays the unconditional posterior standard
deviation of these coefficients. ’Cond.Sign Certainty (+)’ denotes the share of models where the
coefficient was found to be positive, conditional on inclusion (i.e., sign certainty for a negative
coefficient corresponds to one minus this indicator).
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Table 4.7: PC-MA with principal components extracted from macroeconomic controls and financial
indicators, in-sample results (’PC-MA macrofin’

Variable Post.Incl.Prob. Coef (Post.exp.val.) Coef. St.Dev. Cond.Sign Certainty (+)

Control PC1 1.00 0.61 0.19 1.00
Control PC2 1.00 0.09 0.11 0.97
Control PC3 1.00 0.09 0.07 1.00
Control PC4 1.00 0.41 0.07 1.00
Control PC5 1.00 -0.24 0.07 0.00
Control PC6 1.00 0.22 0.06 1.00
Control PC7 0.99 0.03 0.06 1.00
Control PC8 0.99 -0.06 0.07 0.00
Control PC9 0.99 0.07 0.07 1.00
Control PC10 0.99 0.01 0.07 0.59
Control PC11 0.99 -0.05 0.06 0.00
Control PC12 0.99 -0.16 0.06 0.00
Control PC13 0.99 -0.26 0.07 0.00
Control PC14 0.97 0.04 0.06 1.00
Control PC15 0.97 -0.18 0.07 0.00
Control PC16 0.94 0.12 0.07 1.00
Control PC17 0.90 0.13 0.07 1.00
LAGY 0.58 -0.18 0.21 0.01
LAGQ 0.45 -0.12 0.19 0.01
Control PC18 0.39 0.00 0.04 0.61
Control PC19 0.26 0.01 0.04 1.00
Control PC20 0.20 -0.01 0.03 0.00
Control PC21 0.19 0.02 0.06 1.00
Control PC22 0.07 -0.00 0.02 0.00
Control PC23 0.06 0.00 0.01 1.00
Control PC24 0.05 0.00 0.01 1.00
Control PC25 0.05 -0.00 0.02 0.00
Control PC26 0.05 -0.01 0.03 0.00
Control PC27 0.05 -0.00 0.01 0.00
Control PC28 0.04 -0.00 0.03 0.00
Control PC29 0.03 0.00 0.02 1.00
Control PC30 0.02 -0.00 0.01 0.00
Control PC31 0.01 -0.00 0.01 0.00
Control PC32 0.00 -0.00 0.00 0.00
Control PC33 0.00 -0.00 0.00 0.00
Control PC34 0.00 -0.00 0.00 0.47

Notes: Posterior estimates from PC-MA on sample 1989Q1-2011Q3, estimating GDP growth for
four quarters ahead (in-sample), based on macroeconomic control indicators and lags (framework
’PC-MA macrofin.’). Fully Bayesian estimation was used, with a PCMA-group prior (see Section
3) as model prior, and the hyper-g prior framework (Feldkircher and Zeugner, 2009) as coefficient
prior. Variables are divided into ’Control PC’, i.e. ranked principal components based on a control
data set. Variables ’LAGY’ corresponds to lagged annual GDP growth, while ’LAGQ’ is most
recent quarterly GDP growth. ’Post.Incl.Prob.’ denotes the posterior inclusion probability (PIP)
per variable. ’Coef (Post.exp.val)’ details the posterior expected value (’estimate’) for standardized
coefficients. Note that these coefficients are ’unconditional’, i.e. averaged over models that include
and do not include the variable.1 ’Coef. St.Dev.’ displays the unconditional posterior standard
deviation of these coefficients. ’Cond.Sign Certainty (+)’ denotes the share of models where the
coefficient was found to be positive, conditional on inclusion (i.e., sign certainty for a negative
coefficient corresponds to one minus this indicator).
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RMSE over sample: DFM PC-MA PC-MA PCAR BMA full FMA
macro macrofin. PC-MA

2000Q1-2008Q2 1.488 1.426 1.418 2.356 2.097 1.546 9.813
2000Q1-2011Q3 2.233 2.364 2.294 4.891 4.814 4.437 13.324

Table 4.8: Root mean squared errors for rolling out-of sample forecasts of annual GDP growth over
2000Q1-2011Q3. For model definitions, cf. descriptions of Figures 4.6 and 4.7. Model ’FMA’ is the
frequentist model averaging (S-BIC) equivalent of ’BMA’.
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Generalizing the PC-MA prior to size-based model priors

The adjusted PC-prior proposed in section 4.3.2 may be combined with any model prior on the focus
variables, and reconciled with requirement (A) from section 4.3.2 that defines the prior importance
of a variable group with respect to all other variable groups and the null model. Let f(Mγ)
denote the model prior for model Mγ with γ ∈ 2K , K =

∑
lKC,l under outright model averaging.

Moreover , let Mγ /∈l denote models that do not include any variable out of group l. Then, the
conceptual equivalent of requirement (A) is

Θl = (1−
∑
Mγ /∈l

f(Mγ /∈l))

For a general model prior, this restriction might be numerically difficult to evaluate, but it is readily
available in case of model priors that only depend on model size k, such as the one proposed by
Ley and Steel (2009), or the binomial model prior evoked in section 4.3.2. Denote this model-size
prior by f(kγ ,

∑
lKC,l), only dependent on model Mγ ’s parameter size kγ and the total number of

variables. Then, restriction (A) boils down to:

Θl = 1−
K−Kl∑
m=0

(
Kl

m

)
f(m,K)

Note that restriction (A) generally implies a shifting/skewing of the prior model size distribution,
but it leaves the relative prior weights unchanged among models that only include variables from
singleton groups (i.e. only focus variables). The expression for overall prior model size (11) holds
under general size-based priors. The prior expected number of PCs of group l to be included is

defined as E(kΛ,l) = Θl

∑irl
i=1 λ

αl
i,l

λ
αl
1,l

. Note that this number is isomorphic to the hyperparameter αl.

This result obtains since limαl→∞
λ
αl
1,l−λ

αl
1,2

λ
αl
1,l

= 1 and limαl→0
λ
αl
r,l

λ
αl
1,l

= 1, as well as
∂E(kΛ,l)
∂αl

< 0∀a.

While there is no closed-form solution for the inverse function αl(E(kΛ,l)), it may be nonetheless
advisable to specify the degree of concentration in terms of the prior expected number of included
PCs E(kΛ,l).
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